首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unanesthetized rats treated with deoxycorticosterone acetate were continuously infused with a maximally effective dose of vasopressin (50 muU/min per 100 g). After a control period of 2 h the animals were subjected to a 2 h period of unilateral stimulation of the carotid baroreceptors. There was a large natriuretic response accompanied by diuresis and a fall in urine osmolality. It was concluded that neither the natriuretic nor the diuretic response could be explained by inhibition of vasopressin secretion. Analysis of kidney tissue indicated that the diuresis was associated with partial dissipation of the inner medullary concentration gradient.  相似文献   

2.
The role of the medullary collecting duct in pressure natriuresis has not been established. In vivo microcatheterization was used to study the effect of an acute increase in blood pressure induced by bilateral carotid artery and vagal nerve ligation on medullary collecting duct function in anaesthetized rats. Increased fluid and electrolyte excretion during pressure natriuresis were accompanied by increased delivery of water, sodium, chloride, and potassium to the beginning of the medullary collecting duct, a change that was significantly greater than in a second series of time-control animals. These increases in delivery were within the range for which constant fractional NaCl reabsorption had been found previously. However, during increased perfusion pressure, reabsorption of both sodium and chloride in the medullary collecting duct as a fraction of delivered load were reduced from 81 +/- 4.1 to 51 +/- 9.3% (p less than 0.01) and from 65.7 +/- 6.0 to 42.7 +/- 9.1% (p less than 0.01), respectively. No significant changes in medullary collecting reabsorption were seen in the time controls. We conclude that increased perfusion pressure, in addition to increasing delivery to the medullary collecting duct, also inhibits sodium chloride reabsorption in this nephron segment.  相似文献   

3.
We have recently demonstrated that chronic infusion of exogenous ANG II, which induces blood pressure elevation, attenuates renal medullary endothelin B (ET(B)) receptor function in rats. Moreover, this was associated with a reduction of ET(B) receptor expression in the renal inner medulla. The aim of this present work was to investigate the effect of a physiological increase in endogenous ANG II (low-salt diet) on the renal ET system, including ET(B) receptor function. We hypothesized that endogenous ANG II reduces renal medullary ET(B) receptor function during low-salt intake. Rats were placed on a low-salt diet (0.01-0.02% NaCl) for 2 wk to allow an increase in endogenous ANG II. In rats on normal-salt chow, the stimulation of renal medullary ET(B) receptor by ET(B) receptor agonist sarafotoxin 6c (S6c) causes an increase in water (3.6 ± 0.4 from baseline vs. 10.5 ± 1.3 μl/min following S6c infusion; P < 0.05) and sodium excretion (0.38 ± 0.06 vs. 1.23 ± 0.17 μmol/min; P < 0.05). The low-salt diet reduced the ET(B)-dependent diuresis (4.5 ± 0.5 vs. 6.1 ± 0.9 μl/min) and natriuresis (0.40 ± 0.11 vs. 0.46 ± 0.12 μmol/min) in response to acute intramedullary infusion of S6c. Chronic treatment with candesartan restored renal medullary ET(B) receptor function; urine flow was 7.1 ± 0.9 vs. 15.9 ± 1.7 μl/min (P < 0.05), and sodium excretion was 0.4 ± 0.1 vs. 1.1 ± 0.1 μmol/min (P < 0.05) before and after intramedullary S6c infusion, respectively. Receptor binding assays determined that the sodium-depleted diet resulted in a similar level of ET(B) receptor binding in renal inner medulla compared with rats on a normal-salt diet. Candesartan reduced renal inner medullary ET(B) receptor binding (1,414 ± 95 vs. 862 ± 50 fmol/mg; P < 0.05). We conclude that endogenous ANG II attenuates renal medullary ET(B) receptor function to conserve sodium during salt deprivation independently of receptor expression.  相似文献   

4.
Adrenomedullin reduces systemic blood pressure and increases urinary sodium excretion partly through the release of nitric oxide. We hypothesized that chronic adrenomedullin infusion ameliorates salt-sensitive hypertension and increases the expression of renal nitric oxide synthase (NOS) in Dahl salt-sensitive (DS) rats, because the reduced renal NOS expression promotes salt sensitivity. DS rats and Dahl salt-resistant (DR) rats were fed a high sodium diet (8.0% NaCl) for 3 weeks. The high sodium diet resulted in an increase in blood pressure and a reduction of urinary sodium excretion in association with increased renal adrenomedullin concentrations and decreased expression of renal neuronal NOS (nNOS) and renal medullary endothelial NOS (eNOS) in DS rats compared with DR rats. Chronic adrenomedullin infusion partly inhibited the increase of blood pressure and proteinuria in association with a restoration of renal nNOS and medullary eNOS expression in DS rats under the high sodium diet. The immunohistochemical analysis revealed that the restored renal nNOS expression induced by chronic adrenomedullin infusion may reflect the restoration of nNOS expression in the macula densa and inner medullary collecting duct. These results suggest that adrenomedullin infusion has beneficial effects on this hypertension probably in part through restored renal NOS expression in DS rats.  相似文献   

5.
Renin release elicited by i.v. injection of loop-diuretics was used to study the effects of angiotensin II (AII) on intrarenal hemodynamics. The vasoconstrictive action of intrarenally synthesized AII predominates in the efferent glomerular arteriole. Such a vasoconstrictive effect could affect blood flow in the vasa recta which stem from efferent arterioles of juxtamedullary glomeruli. Renin secretion and renal inner medullary blood flow (tissue clearance of 133Xe) were simultaneously measured before and after frusemide-induced renin release. The relationship between renin secretion and renal inner medullary blood flow was inverse. Changes in renal medullary blood flow may be physiological determinants of medullary osmolality and renal concentration ability. The intrarenal role of AII in urinary concentration recovery after frusemide was examined. Inhibition of renin release by propranolol or AII-blockade (by saralasin or Hoe 409) delayed recovery of urinary osmolality. In the conscious rat, propranolol slowed down recovery of the cortico-papillary gradient for sodium. Its vasoconstrictive action on the efferent glomerular arteriole might enable the renin-angiotensin system to participate in the control of renal excretion of salt and water.  相似文献   

6.
7.
The effect of suppression of prostaglandin synthesis on renal sodium handling and microsomal Na-K ATPase was studied in control and indomethacin treated intact rats maintained on a normal sodium diet (series A) and chronically salt loaded (series B). Indomethacin administration resulted in a decreased GFR and a significantly depressed urinary excretion and an increased fractional reabsorption of sodium in animals fed the normal sodium diet or chronically salt loaded. In rats maintained on a normal Na diet, the activity of the renal medullary Na-K ATPase after indomethacin was 206.3 +/- 6.4 ug Pi/mg protein, i.e. significantly higher as compared with the enzyme activity in the medullary renal fraction from control animals in which it averaged 148 +/- 7.79 ug Pi/mg protein (p less than 0.001). While after chronic salt load a similar increment in the activity of renal medullary Na-K ATPase was observed, no additional stimulation was elicited by subsequent indomethacin administration. The addition of exogenous PGE2, 0.1 mM to microsomal fractions obtained from kidneys of normal rats, was associated with a moderate suppression of the medullary Na-K-ATPase activity, from a basal level of 170 +/- 16 to 151.3 +/- 13 umol Pi/mg protein/hr (p less than 0.005). In isolated segments of medullary thick ascending limb of Henle's loop (MTAL) addition of PGE2 to the incubation medium resulted in a significant inhibition of Na-K ATPase from 37.2 +/- 2 to 21.25 +/- 1.17 x 10(-11) mol/mm/min (p less than 0.0001). These findings suggest that the increased renal Na reabsorption after inhibition of PG synthesis might be related, at least partly, to stimulation of medullary Na-K ATPase. In parallel, the reported natriuretic effect of prostaglandins might imply a direct inhibitory effect of these mediators on renal Na-K ATPase.  相似文献   

8.
Previously, we showed that increased extracellular tonicity promotes increased type A natriuretic peptide receptor (NPR-A) expression through a p38 MAPKbeta pathway in inner medullary collecting duct cells. The endothelial and inducible nitric-oxide synthase (eNOS and iNOS respectively) genes are also expressed in this nephron segment and are thought to play a role in regulating urinary sodium concentration. We sought to determine whether changes in tonicity might regulate NOS gene expression, and if so, whether these latter changes might be linked mechanistically to the increase in NPR-A gene expression. Increased extracellular tonicity effected a time-dependent reduction in eNOS and iNOS protein levels, eNOS mRNA levels, and eNOS gene promoter activity over the first 8 h of the incubation. Although levels of the eNOS mRNA and promoter activity had returned to normal after 24 h, eNOS protein levels remained low at 24-36 h, and recovery was not complete even at 48 h. The decrease in eNOS expression was signaled in large part through a p38 MAPK-dependent mechanism. Reduction in eNOS expression together with the concomitant decline in intracellular cyclic GMP levels appears to account for a significant portion of the p38 MAPK-dependent osmotic stimulation of NPR-A gene expression noted previously. Collectively, these findings support the existence of a complex regulatory circuitry in the cells of the inner medullary collecting duct linking two independent cyclic GMP-generating signal transduction systems involved in regulation of urinary sodium concentration.  相似文献   

9.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   

10.
Salt and water retention is a hallmark of nephrotic syndrome (NS). In this study, we test for changes in the abundance of urea transporters, aquaporin 2 (AQP2), Na-K-2Cl cotransporter 2 (NKCC2), and Na-Cl cotransporter (NCC), in non-pair-fed and pair-fed nephrotic animals. Doxorubicin-injected male Sprague-Dawley rats (n = 10) were followed in metabolism cages. Urinary excretion of protein, sodium, and urea was measured periodically. Kidney inner medulla (IM), outer medulla, and cortex tissue samples were dissected and analyzed for mRNA and protein abundances. At 3 wk, all doxorubicin-treated rats developed features of NS, with a ninefold increase in urine protein excretion (from 144 ± 21 to 1,107 ± 165 mg/day; P < 0.001) and reduced urinary sodium excretion (from 0.17 to 0.12 meq/day; P < 0.001). Urine osmolalities were reduced in the nephrotic animals (1,057 ± 37, treatment vs. 1,754 ± 131, control). Unlike animals fed ad libitum, UT-A1 protein abundance was unchanged in nephrotic pair-fed rats. Glycosylated AQP2 was reduced in the IM base of both nephrotic groups. Abundances of NKCC2 and NCC were consistently reduced (71 ± 7 and 33 ± 13%, respectively) in both nephrotic pair-fed animals and animals fed ad libitum. In pair-fed nephrotic rats, we observed an increase in the cleaved form of membrane-bound γ-epithelial sodium channel (ENaC). However, α- and β-ENaC subunits were unaltered. NKCC2 and AQP2 mRNA levels were similar in treated vs. control rats. We conclude that dietary protein intake affects the response of medullary transport proteins to NS.  相似文献   

11.
Combretastatin A-4 disodium phosphate (CA4P) is a vascular disrupting agent known to mediate its effects primarily on tumor blood vessels. CA4P has previously been shown to induce a significant increase in mean arterial blood pressure and in hemoglobin concentration in mice. In the present study, we examined whether this is associated with a general leakage of water into certain tissues or with changes in renal water handling. Munich-Wistar rats received either CA4P (30 mg/kg body wt) or saline intraperitoneally as a bolus injection. One hour later, hemoglobin concentration and mean blood pressure increased significantly. MRI showed no significant changes in tissue water content following CA4P administration. However, urine output and salt excretion increased 1 h after CA4P treatment, without changes in urinary and medullary osmolality. Aquaporin 2 (AQP2) mRNA levels in kidney inner medulla did not change 1 h after CA4P treatment, but semiquantitative confocal laser-scanning microscopy analysis demonstrated a decrease in phosphorylated AQP2 (pS256-AQP2) apical distribution within the collecting ducts of CA4P-treated rats compared with the characteristic apical localization in control rats. Furthermore, we demonstrated that CA4P cause disruption of microtubules and a weaker apical labeling of pS256-AQP2 in collecting duct principal cells within 1 h. In conclusion, our data indicate that water escapes from the vascular system after CA4P treatment, and it may take place primarily through a renal mechanism. The CA4P-mediated increase in urine output seems to be a local effect in the collecting ducts due to reduced AQP2 trafficking to the apical plasma membrane.  相似文献   

12.
To investigate the involvement of vagal afferents in renal nerve release of catecholamines, we compared norepinephrine, dopamine, and epinephrine excretion from innervated and chronically denervated kidneys in the same rat. The difference between innervated and denervated kidney excretion rates was taken as a measure of neurotransmitter release from renal nerves. During saline expansion, norepinephrine excretion from the innervated kidney was not statistically greater than from denervated kidneys. Vagotomy increased norepinephrine release from renal nerves. Thus vagal afferents participated in the suppression of renal sympathetic nerve activity during saline expansion. No significant vagal control of dopamine release by renal nerves was detected under these conditions. Bilateral carotid ligation stimulated renal nerve release of both norepinephrine and dopamine in saline-expanded rats. The effects of carotid ligation and vagotomy were not additive with respect to norepinephrine release by renal nerves. However, the baroreflex-stimulated renal nerve release of dopamine was abolished by vagotomy. Electrical stimulation of the left cervical vagus with a square wave electrical pulse (0.5 ms duration, 10 V, 2 Hz) increased dopamine excretion exclusively from the innervated kidney of hydropenic rats. No significant change in norepinephrine excretion was observed during vagal stimulation. Increased dopamine excretion during vagal stimulation was associated with a larger natriuretic response from the innervated kidney than from its denervated mate (p less than 0.05). We conclude that under appropriate conditions vagal afferents stimulate renal release of dopamine and produce a neurogenically mediated natriuresis.  相似文献   

13.
Although it is well established that the renal endothelin (ET-1) system plays an important role in regulating sodium excretion and blood pressure through activation of renal medullary ET(B) receptors, the role of this system in Dahl salt-sensitive (DS) hypertension is unclear. The purpose of this study was to determine whether the DS rat has abnormalities in the renal medullary endothelin system when maintained on a high sodium intake. The data indicate that Dahl salt-resistant rats (DR) on a high-salt diet had a six-fold higher urinary endothelin excretion than in the DR rats with low Na(+) intake (17.8 ± 4 pg/day vs. 112 ± 44 pg/day). In sharp contrast, urinary endothelin levels increased only twofold in DS rats in response to a high Na(+) intake (13 ± 2 pg/day vs. 29.8 ± 5.5 pg/day). Medullary endothelin concentration in DS rats on a high-Na(+) diet was also significantly lower than DR rats on a high-Na(+) diet (31 ± 2.8 pg/mg vs. 70.9 ± 5 pg/mg). Furthermore, DS rats had a significant reduction in medullary ET(B) receptor expression compared with DR rats while on a high-Na(+) diet. Finally, chronic infusion of ET-1 directly into the renal medulla blunted Dahl salt-sensitive hypertension. These data indicate that a decrease in medullary production of ET-1 in the DS rat could play an important role in the development of salt-sensitive hypertension observed in the DS rat.  相似文献   

14.
The aim of this study was to determine the effect of changes in osmolality on the reduced renal medullary Na-K-ATPase (EC 3.6.1.3) activity of the postobstructive kidney. The effect of osmolality on renal medullary Na-K-ATPase activity was studied by incubating tissue slices from sham-operated and bilaterally obstructed rats in media with osmolality varied before enzyme isolation using sodium chloride, choline chloride, or sucrose. Both sham-operated and bilaterally obstructed rat renal medullary enzyme showed a similar increase in activity with increased osmolality due to sodium chloride. Medullary Na-K-ATPase from the postobstructive kidney also showed increased activity with osmotic changes induced by choline chloride or sucrose. It is proposed that the decrease of Na-K-ATPase activity observed after bilateral ureteral obstruction is due, at least in part, to the loss of the solute concentration gradient in the kidney.  相似文献   

15.
The effect of suppression of prostaglandin synthesis on renal sodium handling and microsomal Na---K ATPase was studied in control and indomethacin treated intact rats maintained on a normal sodium diet (series A) and chronically salt loaded (series B). Indomethacin administration resulted in a decreased GFR and a significantly depressed urinary excretion and an increased fractional reabsorption of sodium in animals fed the normal sodium diet or chronically salt loaded. In rats maintained on a nomral Na diet, the activity of the renal medullary Na---K ATPase after indomethacin was 206.3±6.4 ug Pi./mg protein, i.e. significantly higher as compared with the enzyme activity in the medullary renal fraction from control animals in which it averaged 148±7.79 ug Pi/mg protein (p<0.001). While after chronic salt load a similar increment in the activity of renal medullary Na---K ATPase was observed, no additional stimulation was elicited by subsequent indomethacin administration. The addition of exogenous PGE2, mM to microsomal fractions obtained from kidneys of normal rats, was associated with a moderate suppression of the medullary Na---K---ATPase activity, from a basal level of 170±16 to 151.3±13 umol Pi/mg protein/hr (p<0.005. In isolated segments of medullary thick ascending limb of Henle's loop (MTAL) addition of PGE2 to the incubation medium resulted in a significant inhibition of Na---K--- ATPase from 37.2±2 to 21.25 ± 1.17 × 10−11 mol/mm/min (p<0.0001.These findings suggest that the increased renal Na reabsorption after inhibition of PG synthesis might be related, at least partly, to stimulation of medullary Na---K ATPase. In parallel, the reported natriuretic effect of prostaglandins might imply a direct inhibitory effect of these mediators on renal Na---K ATPase.  相似文献   

16.
Thomas P. Green 《Life sciences》1984,34(22):2169-2176
The effects on renal sodium excretion of two systemic vasodilators, hydralazine and diazoxide, were investigated in volume expanded, anesthetized rats with unilaterally denervated kidneys. Urinary sodium excretion and fractional excretion of filtered sodium increased following hydralazine but decreased following diazoxide. Changes in renal hemodynamics were dissimilar as well: renal plasma flow was increased following hydralazine, but unchanged with diazoxide. All changes in renal sodium excretion and renal hemodynamics following hydralazine were prevented by pretreatment with indomethacin. Renal denervation accentuated the increases in fractional sodium excretion and renal blood flow that occured following hydralazine.Hydralazine and diazoxide differ substantially in their effects on renal sodium excretion, apparently due to the stimulation of renal prostaglandins by the former agent. Although renal innervation attenuates the natriuretic effect of hydralazine, stimulation of the sympathetic nervous system does not account for differences in the renal effects of these two drugs.  相似文献   

17.
Plasma volume (PV) expansion is required for optimal pregnancy outcomes; however, the mechanisms responsible for sodium and water retention in pregnancy remain undefined. This study was designed to test the "arterial underfill hypothesis" of pregnancy which proposes that an enlarged vascular compartment (due to systemic vasodilation and shunting of blood to the placenta) results in renal sodium and water retention and PV expansion. We produced chronic vasodilation by 14 days administration of nifedipine (NIF; 10 mg·kg(-1)·day(-1)) or sodium nitrite (NaNO2; 70 mg·kg(-1)·day(-1)) to normal, nonpregnant female Sprague-Dawley rats. Mean arterial pressure, monitored by telemetry, was reduced by both NIF and NaNO2 but was unchanged in control rats. At day 14, vasodilator treatment lowered hematocrit and increased PV (determined by Evans blue dye dilution). Plasma osmolarity (Posm), sodium (PNa), and total protein concentrations all fell. These responses resemble the responses to normal pregnancy with hemodilution, marked PV expansion, and decreased Posm and PNa. Our previous work indicates a role of increased inner medullary phosphodiesterase-5 (PDE5) in the sodium retention of pregnancy. Here, we found that inner medullary PDE5A mRNA and protein expression were increased by both NIF and NaNO2 treatment vs. control; however, neither renal cortical nor aortic PDE5 expression was changed by vasodilator treatment. We suggest that a primary, persistent vasodilation drives increased inner medullary PDE5 expression which facilitates continual renal Na retention causing "refilling" of the vasculature and volume expansion.  相似文献   

18.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats.  相似文献   

19.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats.  相似文献   

20.
Male spontaneously hypertensive rats (SHR) have a blunted pressure-natriuresis relationship and enhanced oxidative stress compared with female SHR. Furthermore, oxidative stress contributes to abnormal renal Na+ handling and renal damage in hypertension. The aim of this study was to determine whether a sex difference exists in renal inner medullary hydrogen peroxide (H2O2) levels and/or antioxidant systems in SHR and the influence of sex steroids on these systems. Thirteen-week-old intact and gonadectomized male and female SHR were placed in metabolic cages for 24-h urine collection. Renal inner medullas were isolated for antioxidant activity assays and Western blot analysis or for measurements of H2O2 using Amplex Red. Studies verified that male SHR had greater Na+ reabsorption compared with female SHR. Male SHR had enhanced urinary excretion of H2O2 compared with female SHR. Gonadectomy decreased H2O2 excretion in males and increased H2O2 excretion in females, suggesting that testosterone stimulates total body oxidative stress and estrogen suppresses levels of total body oxidative stress. There was not a sex difference in inner medullary H2O2 levels. Male SHR had a testosterone-dependent increase in inner medullary SOD activity, and both intact and gonadectomized males had high levels of inner medullary catalase activity compared with females. The results of this study showed that there was a sexual dimorphism in Na+ handling and oxidant status. We hypothesize that there is a testosterone-sensitive increase in whole body reactive oxygen species production that results in a compensatory increase in the inner medullary antioxidant capability possibly to normalize Na+ handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号