首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A xanthate derivative (L) at the pendant hydroxy group of metronidazole, a nitroimidazole known to possess affinity for hypoxic tumors, has been used as the carrier molecule for targeted delivery of the gamma-emitting radioisotope 99mTc to tumors. The xanthate residues (S2(-)) from two molecules of this ligand (L) were used for chelation with the [99mTcN]2+ intermediate to form a square pyramidal and neutral [99mTcN/L2] complex in >95% yield using a low ligand concentration of 1 mg/mL (approximately 3 x 10(-3) M). Biodistribution studies carried out in Swiss mice bearing fibrosarcoma tumor showed selective accumulation of the injected activity in the tumor (1.44 +/- 0.26% per gram 1 h pi) with major clearance through hepatobiliary route. The complex showed high tumor/muscle ratio (2.15 and 3.35 at 1 and 3 h post-injection, respectively) and tumor/blood ratio, which were comparable to hypoxia targeting agents 99mTc-BMS181321 and 99mTc-BRU59-21 reported earlier.  相似文献   

2.
Multidrug resistance (MDR) mediated by over-expression of P-glycoprotein (Pgp) is one of the major causes of failure of chemotherapy in cancer treatment. Colchicine, a naturally occurring alkaloid, is a Pgp substrate and acts as an antimitotic agent by binding to microtubules. Hence, Colchicine and its analogues radiolabeled with 99mTc may have potential for visualization of MDR in tumors. Here we report 99mTc-labeling of colchicine derivatives using [99mTc(CO)3(H2O)3]+ and [99mTc triple bond N]2+ cores. Trimethylcolchicinic acid synthesized from colchicine was used as the precursor to prepare iminodiacetic acid and dithiocarbamate derivatives which were then radiolabeled with [99mTc(CO)3(H2O)3]+ and [99mTc triple bond N]2+ cores, respectively. Radiolabeling yield for both the complexes was > 98% as observed by HPLC and TLC patterns. In vitro studies in tumor cell lines showed significant uptake for 99mTc-carbonyl as well as for 99mTc-nitrido colchicine complexes. Biodistribution studies in Swiss mice bearing fibrosarcoma tumor showed 4.1 +/- 1.2% ID/g of uptake at 30 min pi for 99mTc(CO)3-complex as against 0.42 +/- 0.24% ID/g for the 99mTcN-complex. 99mTc(CO)3-colchicine complex exhibited better pharmacokinetics with lower liver accumulation as compared to the 99mTcN-complex. Thus, colchicine radiolabeled with [99mTc(CO)3(H2O)3]+ core is more promising with respect to in vivo distribution characteristics in tumor model.  相似文献   

3.
Integrin alphavbeta3 plays a critical role in tumor angiogenesis and metastasis. Radiolabeled RGD peptides that are integrin alphavbeta3-specific are very useful for noninvasive imaging of integrin expression in rapidly growing and metastatic tumors. In this study, we determined the binding affinity of E{E[c(RGDfK)]2}2 (tetramer) and its 6-hydrazinonicotinamide conjugate (HYNIC-tetramer) against the binding of 125I-echistatin to the integrin alphavbeta3-positive MDA-MB-435 breast cancer cells. The athymic nude mice bearing MDA-MB-435 xenografts were used to evaluate the potential of ternary ligand complex [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate) as a new radiotracer for imaging breast cancer integrin alphavbeta3 expression by single photon emission computed tomography (SPECT). It was found that the binding affinity of tetramer (IC50 = 51 +/- 11 nM) was slightly higher than that of its dimeric analogue (IC50 = 78 +/- 27 nM) and is comparable to that of the HYNIC-tetramer conjugate (IC50 = 55 +/- 11 nM) within the experimental error. Biodistribution data showed that [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had a rapid blood clearance (4.61 +/- 0.81 %ID/g at 5 min postinjection (p.i.) and 0.56 +/- 0.12 %ID/g at 120 min p.i.) and was excreted mainly via the renal route. [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had high tumor uptake with a long tumor retention (5.60 +/- 0.87 %ID/g and 7.30 +/- 1.32 %ID/g at 5 and 120 min p.i., respectively). The integrin alphavbeta3-specificity was demonstrated by co-injection of excess E[c(RGDfK)]2, which resulted in a significant reduction in tumor uptake of the radiotracer. The metabolic stability of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] was determined by analyzing urine and feces samples from the tumor-bearing mice at 120 min p.i. In the urine, about 20% of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] remained intact while only approximately 15% metabolized species was detected in feces. SPECT images displayed significant radiotracer localization in tumor with good contrast as early as 1 h p.i. The high tumor uptake and fast renal excretion make [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] a promising radiotracer for noninvasive imaging of the integrin alphavbeta3-positive tumors by SPECT.  相似文献   

4.
The anti-Tac disulfide-bonded variable region fragment (dsFv) is a genetically engineered, 25 kDa, murine monoclonal antibody fragment that recognizes the alpha subunit of the interleukin-2 receptor (IL-2Ralpha). The dsFv radiolabeled with the tetrafluorophenyl ester (TFP) of [99mTc]mercaptoacetyltriglycine ([99mTc]MAG3-TFP) showed rapid tumor uptake and fast blood clearance in mice, resulting in high tumor-to-nontumor background ratios. However, its high renal uptake was a problem. In this study, we tested the effect of lowering the isoelectric point (pI) of dsFv to <9.3 on renal and tumor uptake. To lower the pI, dsFv was acylated simultaneously with both [99mTc]MAG3-TFP and TFP-glycolate. The acylation of dsFv decreased its pI and its immunoreactivity inversely proportional to the molar ratio of TFP-glycolate to dsFv, whereas the conjugation of [99mTc]MAG3-TFP alone did not. When biodistribution studies were performed in nude mice, the effect of the lowered pI was reflected primarily in decreased kidney uptake and whole-body retention, with its highest effect seen at the earliest time point (15 min) after injection. In tumor-bearing nude mice, glycolated [99mTc]MAG3-dsFv with a pI range of 4.9 to 6.5 accumulated selectively into IL-2 receptor-positive SP2/Tac tumor similar to that of the control [125I]dsFv labeled by the Iodo-Gen method, whereas its renal uptake was 25% of [125I]dsFv at 15 min. At 90 min, the ratios of tumor to receptor-negative SP2/0 tumor, liver, kidney, stomach, and blood had peaked at 10.9, 8.5, 0.3, 5.0, and 6.2, respectively, for the glycolated [99mTc]MAG3-dsFv. The corresponding ratios for [125I]dsFv were 3.7, 5.0, 0.1, 1.5, and 2.1, respectively.  相似文献   

5.
The overexpression of neuropeptide receptors observed in many cancers provides an attractive target for tumor imaging and therapy. Bombesin is a peptide exhibiting a high affinity for the gastrin releasing peptide (GRP) receptor, which is overexpressed by a variety of tumors such as breast or prostate cancer. In the present study, we have evaluated if the bombesin analogue [N(alpha)-histidinyl acetate]bombesin(7-14), radiolabeled with the novel [99mTc(OH(2))(3)(CO)(3)]+, has the potential to be used as a diagnostic radiopharmaceutical. Receptor saturation studies, carried out on the GRP receptor-expressing PC-3 human prostate cancer cell line, revealed for [99mTc(CO)(3)-N(alpha)-histidinyl acetate]bombesin(7-14) K(d) values in the subnanomolar range. Competitive binding assays, using the cold rhenium(I)-labeled analogue as a surrogate for the 99mTc-conjugate, also showed high affinity binding. Incubation of the radioconjugate with PC-3 cells resulted in a rapid temperature- and time-dependent specific internalization. At 37 degrees C more than 70% was internalized within the first 15 min and remained constant up to 2 h. Despite the weak proteolytic stability of [99mTc(CO)(3)-N(alpha)-histidinyl acetate]bombesin(7-14) in vitro, biodistribution studies, performed in PC-3 tumor-bearing mice, showed low uptake in the tumor (0.89 +/- 0.27% ID/g 30 min pi) but high uptake into the pancreas (7.11 +/- 3.93% ID/g 30 min pi), a GRP receptor-positive organ. Blockade experiment (coinjection of 300 microg bombesin/mouse with the radioligand) showed specificity of the uptake. Despite the low tumor uptake, tumor-to-blood ratios of 2.0 and 2.7 and tumor-to-muscle ratios of 8.9 and 8.0 were obtained at 30 min and 1.5 h postinjection, respectively. The promising results merit the future in vivo investigation of 99mTc/188Re-tricarbonyl-labeled bombesin analogues.  相似文献   

6.
Liu S  He Z  Hsieh WY  Kim YS  Jiang Y 《Bioconjugate chemistry》2006,17(6):1499-1507
This report describes synthesis of three new cyclic RGDfK peptide conjugates, HYNIC-PKM-SU016 (PKM = E, K and PEG4) and in vivo evaluation of the impact of PKM linkers on biodistribution characteristics of their ternary ligand complexes [99mTc(HYNIC-PKM-SU016)1(tricine)(TPPTS)] in athymic nude mice bearing the MDA-MB-435 human breast cancer xenografts. Results from biodistribution studies show that PKM linkers have minimal impact on the integrin alphavbeta3 binding capability of radiotracers. Even though they have different charges under physiological conditions, all three linkers (E, K, and PEG4) are able to reduce the uptake of 99mTc-labeled E[c(RGDfK)]2 in blood, kidneys, liver, and lungs, and increase target-to-background (T/B) ratios at >30 min postinjection. E and K may have advantages over PEG4 due to a combination of relatively low liver uptake and high tumor/liver and tumor/lung ratios of ternary ligand complexes [99mTc(HYNIC-PKM-SU016)(tricine)(TPPTS)] (PKM = E and K).  相似文献   

7.
99mTc(CO)3-15-[N-(Acetyloxy)-2-picolylamino]pentadecanoic acid (1a) was prepared by incorporating [99mTc(CO)3]+ into 15-[N-(hydroxycarbonylmethyl)-2-picolylamino]pentadecanoic acid (2a). The overall radiochemical yield of 1a after HPLC purification was 60-63%. Radiotracer 1a was found to be chemically stable when incubated in human plasma for 4 h at 37 degrees C. Tissue distribution studies showed that high radioactivity accumulated in the heart with rapid clearance. The maximum heart-to-blood uptake ratio was 1.87 at 5 min after a tail-vein injection. Radioactive metabolites were analyzed in urine samples of mice and corresponded to a 9.3:1 ratio of 99mTc(CO)3-5-[N-(acetyloxy)-2-picolylamino]pentanoic acid (1b) to 99mTc(CO)3-3-[N-(acetyloxy)-2-picolylamino]propionic acid (1c), indicating that 1a is mainly metabolized to 1b via beta-oxidation in the body. These results suggest that 1a is a promising radiotracer for evaluation of fatty acid metabolism in myocardium.  相似文献   

8.
Purified field bean protease inhibitor (FBPI) was labeled with 99mTcO4- to ascertain its ability to locate tumors in tumor-bearing rat models. The labeling was done with Sn2+ as a reducing agent and the yield was 95%. It was stable for 2 hr at ambient temperature. The biodistribution study of the intravenously injected radiolabeled FBPI in normal Wistar rats at various time intervals showed a rapid blood clearance from the systemic circulation (approximately 5hr). The complex was predominantly excreted through the renal and the hepatobiliary systems. In vivo distribution and scintiimaging of 99mTc-FBPI were carried out in rats bearing carcinogen-induced mammary tumor or transplanted C6-gliomas. The results obtained were compared with conventional tumor-seeking radiopharmaceuticals such as 99mTc-(V)dimercaptosuccinic acid (DMSA), 201Thallous chloride (TICI) and 99mTc-Citrate. The tumor to muscle (T/M) ratios obtained with 99mTc-FBPI in rat C6 glioma was nearly 2 to 5-fold higher than obtained with all the three conventional tumor-seeking agents. The T/M ratio obtained with 99mTc-FBPI in rat mammary tumor on the other hand appeared to be 2-3-fold higher than noted with 99mTc(V)-DMSA and 201TlCl. The ratio was however comparable with that obtained with 99mTc-Citrate. The study indicated that 99mTc-FBPI has the specific potentials for imaging gliomas and possibly other tumors as well.  相似文献   

9.
In this study, EDDA (ethylenediamine- N, N'-diacetic acid) was used as the coligand for 99mTc-labeling of cyclic RGDfK conjugates: HYNIC-dimer (HYNIC = 6-hydrazinonicotinamide; dimer = E[c(RGDfK)]2) and HYNIC-tetramer (tetramer = E{E[c(RGDfK)]2}2). First, HYNIC-dimer was allowed to react with 99mTcO4 (-) in the presence of excess tricine and stannous chloride to form the intermediate complex [99mTc(HYNIC-dimer)(tricine)2], which was then allowed to react with EDDA to afford [99mTc(HYNIC-dimer)(EDDA)] with high yield (>90%) and high specific activity ( approximately 8.0 Ci/micromol). Under the same radiolabeling conditions, the yield for [99mTc(HYNIC-tetramer)(EDDA)] was always <65%. The results from a mixed-ligand experiment show that there is only one EDDA bonding to the 99mTc-HYNIC core in [99mTc(HYNIC-dimer)(EDDA)]. The athymic nude mice bearing subcutaneous U87MG human glioma xenografts were used to evaluate the impact of EDDA coligand on the biodistribution characteristics and excretion kinetics of the 99mTc-labeled HYNIC-dimer and HYNIC-tetramer. Surprisingly, [99mTc(HYNIC-dimer)(EDDA)] and [99mTc(HYNIC-tetramer)(EDDA)] had almost identical tumor uptake over the 2 h period. The use of EDDA as coligand to replace tricine/TPPTS (TPPTS = trisodium triphenylphosphine-3,3',3'-trisulfonate) did not significantly change the uptake of the 99mTc-labeled HYNIC-dimer in noncancerous organs, such as the liver, kidneys, and lungs; but it did result in a significantly lower kidney uptake for the 99mTc-labeled HYNIC-tetramer due to faster renal excretion. It was also found that the radiotracer tumor uptake decreases in a linear fashion as the tumor size increases. The smaller the tumors are, the higher the tumor uptake is regardless of the identity of radiotracer.  相似文献   

10.
Bombesin (BBN) peptide exhibits high selectivity and affinity for the gastrin-releasing peptide receptor (GRPr). The GRPr is overexpressed on many human cancer cell types, thus making BBN a potent delivery vehicle for radionuclide targeting. In this study, the biologically active minimal sequence BBN(7-14) was labeled using the novel Tc '4 + 1' mixed-ligand system, [Tc(NS3)(CN-R)], in which Tc(III) is coordinated by a monodentate isocyanide linker bearing the peptide and the tetradentate, tripodal chelator, 2,2',2'-nitrilotriethanethiol (NS3). BBN(7-14) was N-terminally modified with Gly-Gly-Gly, betaAla, and Ser-Ser-Ser spacer groups (X) and functionalized with 4-(isocyanomethyl)benzoic acid (L1) or 4-isocyanobutanoic acid (L2), resulting in a series of [M(NS3)(L-X-BBN(7-14))] conjugates (M = 99mTc, Re). The isocyanide ligand frameworks were introduced using novel bifunctional coupling agents. The spacer groups (X), the monodentate isocyanide units, and a tetradentate NS3 chelator bearing a pendant carboxylic acid (NS3COOH) were proposed as pharmacological modifiers. 99mTc-labeling was performed in a two-step procedure by first preparing 99mTc-EDTA/mannitol followed by reactions with the isocyanides and NS3 or NS3COOH ligand frameworks. The 99mTc complexes were obtained with a radiochemical yield of 30-80% depending on the amount of the isocyanide (20-100 nmol) used. These new conjugates were purified by reversed-phased high-performance liquid chromatography (RP-HPLC) to give a radiochemical purity of >or=95%. The 99mTc conjugates exhibited high in vitro stability (>90%, 24 h). Analogous nonradioactive Re conjugates were synthesized and characterized by electrospray ionization mass spectrometry (ESI-MS). RP-HPLC analyses of the Re conjugates indicated that they exhibited identical retention times to the corresponding 99mTc conjugates under identical HPLC conditions, demonstrating structural similarity between the two metalated species. The [Re(NS3)(L-X-BBN(7-14))] conjugates exhibited GRPr affinity in the nanomolar range as demonstrated by in vitro competitive binding assays using PC-3 human prostate cancer cells. In vitro internalization/externalization assays indicated that approximately 65% of [99mTc(NS3)(L2-betaAla-BBN(7-14))] conjugate was either surface-bound or internalized in PC-3 cells. Cell-associated activity for all other 99mTc conjugates was below 20%. Biodistribution studies of [99mTc(NS3)(L-betaAla-BBN(7-14))], L = L1 or L2, in normal, CF-1 mice showed minimal accumulation in normal pancreas (a tissue expressing the GRPr in high density in rodent models) and rapid hepatobiliary elimination. Introduction of a carboxyl group onto the NS3 ligand framework had only minimal effects to increase renal excretion. Activity distribution and accumulation was highly dominated by the relatively lipophilic '4 + 1' complex unit.  相似文献   

11.
As a continuation of our interest in novel 99mTc chelating systems, several pyridine-containing HYNIC (6-hydrazinonicotinamide) derivatives (L1-L5) have been synthesized and characterized by NMR (1H and 13C) and LC-MS. 99mTc complexes of L1-L5 were prepared by the reaction of the HYNIC derivative with 99mTcO4- in the presence of excess tricine and stannous chloride. Results from this study show that the attachment site of the linker is critical for the formation of macrocyclic 99mTc complexes. For example, the pyridine-N in L3 is not able to bond to the Tc, because the lysine linker is attached to the 4-position. When the linker is at the 2-position, L1 forms the macrocyclic complex [99mTc(L1)(tricine)], but the radiochemical purity is relatively low. If the linker is attached to the 3-position of the pyridine ring, the HYNIC derivatives form macrocyclic complexes [99mTc(L)(tricine)] (L2, L4, and L5) in high yield (>95%). The HPLC data suggest that the macrocyclic complex [(99m)Tc(L2)(tricine)] exists in solution as four isomers: two diastereomers and two conformational isomers. Diastereomers are due to a combination of the chirality of the lysine linker and of the Tc chelate. Replacing lysine with a pentamethylenediamine linker results in the macrocyclic complex [99mTc(L4)(tricine)] with two conformational isomers, which interconvert rapidly at room temperature. Changing the linker from pentamethylenediamine to hexamethylenediamine did not eliminate the minor isomer; but the percentage of the minor isomer was reduced from approximately 10% for [99mTc(L4)(tricine)] to only 6% for [99mTc(L5)(tricine)]. The linker length is an important parameter to minimize the minor isomer. LC-MS data of complexes [99mTc(L)(tricine)] (L2, L4, and L5) are completely consistent with their proposed compositions. On the basis of these data, it is concluded that pyridine-containing HYNIC derivatives have the potential as bifunctional chelators for 99mTc-labeling of small biomolecules if the linker is attached to the 3-position of the pyridine ring.  相似文献   

12.
Recent progress in the synthesis of water-soluble phosphine ligand systems and their corresponding 99mTc complexes prompted the development of a new bifunctional chelating agent (BFCA) based on a tetradentate dithiadiphosphine framework (P2S2-COOH). The detailed synthesis of this new BFCA is described here. The corresponding 99mTc complex, 99mTc-P2S2-COOH, can be formed in >95% yield. To demonstrate the potential of this chelate to efficiently label peptides, 99mTc-P2S2-COOH was coupled to the N-terminal region of the truncated nine-amino acid bombesin analogue, 5-Ava-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2 [BBN(7-14)], to form 99mTc-P2S2-BBN(7-14). Conjugation to the peptide was performed in borate buffer (pH 8.5) by applying the prelabeling approach in yields of >60%. In competitive binding assays, using Swiss 3T3 mouse fibroblast cells against [125I-Tyr4]bombesin, Re-P2S2-BBN(7-14) exhibited an IC50 value of 0.8 +/- 0.4 nM. The pharmacokinetic studies of 99mTc-P2S2-BBN(7-14) and its ability to target tissue expressing gastrin-releasing peptide (GRP) receptors were performed in normal mice. The 99mTc-P2S2-BBN(7-14) exhibited fast and efficient clearance from the blood pool (0.6 +/- 0.1% ID, 4 h postinjection) and excretion through the renal and hepatobiliary pathways (56.4 +/- 8.2 and 28.1 +/- 7.9% ID, 4 h postinjection, respectively). Significant uptake in the pancreas was observed (pancreatic acini cells express bombesin/GRP receptors), producing pancreas:blood and pancreas:muscle ratios of ca. 22 and 80, respectively, at 4 h postinjection.  相似文献   

13.
A novel method for the preparation of no-carrier-added (nca) complexes [99mTc(CO)3L] (L = diethylenetriamine or picolylamine-N-acetic acid) is described. The ligands were covalently bound to a solid support of organic polymers via formation of a tertiary amine from the chelating unit. This C-N bond to the solid phase is selectively cleaved during the formation of the technetium complexes by intramolecular nucleophilic attack of a remaining hydroxy ligand to the alpha-carbon. The complex [99mTc(CO)3L] is released into solution while uncomplexed ligand and uncleaved complex remain solid-phase bound. High specific activity technetium complexes can then be isolated by simple filtration. Cleavage yield depends on temperature, pH, and ligand. Up to 50% release from the solid phase could be achieved under optimized conditions. Corresponding to the 99mTc concentration, free ligand is present in concentrations lower than 10(-7) M. If a targeting vector is conjugated to these ligands, no-carrier-added radiopharmaceuticals can be prepared in that way.  相似文献   

14.
8-Cyclopentadienyltricarbonyl 99mTc 8-oxooctanoic acid (99mTc-CpTTOA; 1a) was synthesized for evaluation of medium chain fatty acid metabolism in the liver. 99mTc-CpTTOA was prepared in high radiochemical yield (50-63%) by a double ligand transfer reaction of methyl 8-ferrocenyl-8-oxooctanoate and Na99mTcO4 in the presence of CrCl3 and Cr(CO)6, followed by hydrolysis. This radiotracer was shown to be stable (>90% at 6 h) when incubated with human serum. Aqueous extraction of the radioactivity from the liver and blood samples of mice suggested that 99mTc-CpTTOA was mainly metabolized via beta-oxidation in the liver, and the radioactivity was retained longer in CCl4-treated mice than in control mice, possibly due to impaired beta-oxidation in the former. Planar images of rats injected with 99mTc-CpTTOA showed accumulation of the radioactivity in the liver, kidneys, and bladder with rapid hepatic clearance as a function of time. Analysis of the metabolites from the liver and urine samples of rats further supported that 99mTc-CpTTOA was metabolized to 4-cyclopentadienyltricarbonyl 99mTc 4-oxobutanoic acid (99mTc-CpTTBA; 1c) via beta-oxidation. The results suggested that this radiotracer might be of valuable use in the evaluation of fatty acid metabolism in the liver.  相似文献   

15.
During the past decade radiolabeled RGD-peptides have been extensively studied to develop site-directed targeting vectors for integrins. Integrins are heterodimeric cell-surface adhesion receptors, which are upregulated in cancer cells and neovasculature during tumor angiogenesis and recognize the RGD aminoacid sequence. In the present study, we report the synthesis and development of two derivatives of the Nε-Lys derivatized cyclic Arg-Gly-Asp-D-Phe-Lys peptide, namely of cRGDfKHis and cRGDfK-CPA (CPA: 3-L-Cysteine Propionic Acid), radiolabeled via the [(99m)Tc(H(2)O)(3)(CO)(3)](+) metal aquaion at a high yield even at low concentrations of 10-5M (>87%) for cRGDfK-10-5M (>93%) for cRGDfK-CPA. Radiolabeled peptides were characterized with regard to their stability in saline, in His/Cys solutions, as well as in plasma, serum and tissue homogenates and were found to be practically stable. Internalization and efflux assays using αvβ3-receptor-positive MDA-MB 435 breast cancer cells showed a good percentage of quick internalization (29.1 ± 9.8% for (99m)Tc-HiscRGDfK and 37.0 ± 0.7% for (99m)Tc-CPA-cRGDfK at 15 min) and no retention of radioactivity for both derivatives. Their in vivo behavior was assessed in normal mice and pathological SCID mice bearing MDA-MB 435 ανβ3 positive breast tumors. Both presented fast blood clearance and elimination via both the urinary and hepatobiliary systems, with (99m)Tc-His-cRGDfK remaining for a longer time than (99m)Tc-CPA-cRGDfK in all organs examined. Tumor uptake 30 min pi was higher for (99m)Tc-CPAcRGDfK (4.2 ± 1.5% ID/g) than for (99m)Tc-His-cRGDfK (2.8 ± 1.5% ID/g). Dynamic scintigraphic studies showed that the tumor could be visualized better between 15 and 45 min pi for both radiolabeled compounds but low delineation occurred due to high abdominal background. It was finally noticed that the accumulated activity on the tumor site was depended on the size of the experimental tumor; the smaller the size, the higher was the radioactivity concentration.  相似文献   

16.
External imaging of energy production activity of living cells with 99mTc-labeled compounds is a challenging task requiring good design of 99mTc-radiopharmaceuticals. On the basis of our recent findings that 11C- and 123I-labeled medium-chain fatty acids are useful for measuring beta-oxidation activity of hepatocytes, we focused on development of 99mTc-labeled medium-chain fatty acid analogues that reflect beta-oxidation activity of the liver. In the present study, monoamine-monoamide dithiol (MAMA) ligand and triamido thiol (MAG) ligand were chosen as chelating groups because of the stability and size of their complexes with 99mTc and their ease of synthesis. Each ligand was attached to the omega-position of hexanoic acid (MAMA-HA and MAG-HA, respectively). In biodistribution studies, [99mTc]MAMA-HA showed high initial accumulation in the liver followed by clearance of the radioactivity in the urine. Analysis of the urine revealed [99mTc]MAMA-BA as the sole radiometabolite. Furthermore, when [99mTc]MAMA-HA was incubated with living liver slices, generation of [99mTc]MAMA-BA was observed. However, [99mTc]MAMA-HA remained intact when the compound was incubated with liver slices in the presence of 2-bromooctanoate, an inhibitor of beta-oxidation. The findings in this study indicated that [99mTc]MAMA-HA was metabolized by beta-oxidation after incorporation into the liver. On the other hand, poor hepatic accumulation was observed after administration of [99mTc]MAG-HA.  相似文献   

17.
A new labeling approach for incorporating bioactive peptides into a technetium-99m coordination complex is described. This method exploits the chemical properties of the novel metal-nitrido fragment [99mTc(N)(PXP)]2+, composed of a terminal Tc[triple bond] N multiple bond bound to an ancillary diphosphine ligand (PXP). It will be shown that this basic, molecular building block easily forms in solution as the dichloride derivative [99mTc(N)(PXP)Cl2], and that this latter complex selectively reacts with monoanionic and dianionic, bidentate ligands (YZ) having soft, pi-donor coordinating atoms to afford asymmetrical nitrido heterocomplexes of the type [99mTc(N)(PXP)(YZ)]0/+ without removal of the basic motif [99mTc(N)(PXP)]2+. The reactions of the amino acid cysteine was studied in detail. It was found that cysteine readily coordinates to the metal fragment [99mTc(N)(PXP)]2+ either through the [NH2, S-] pair of donor atoms or, alternatively, through the [O-, S-] pair, to yield the corresponding asymmetrical complexes in very high specific activity. Thus, these results were conveniently employed to devise a new, efficient procedure for labeling short peptide sequences having a terminal cysteine group available for coordination to the [99mTc(N)(PXP)]2+ fragment. Examples of the application of this novel approach to the labeling of the short peptide ligand H-Arg-Gly-Asp-Cys-OH (H(2)1) and of the peptidomimetic derivative H-Cys-Val-2-Nal-Met-OH (H2) will be discussed.  相似文献   

18.
The synthesis of a hybrid constituted by distamycin A and cysteine labeled with the gamma-emitting radionuclide 99mTc to afford the conjugate complex 5 is reported. This new radiopharmaceutical is of potential interest as tumor imaging agent in diagnostic nuclear medicine. The preparation of the hybrid distamycin A-cysteine 4 has been achieved by coupling deformyldistamycin A and Boc-Dmt-OH. Compound 4 was then successfully labeled with 99mTc by reaction with the novel, high-electrophilic, metal-containing fragment [99mTc(N)(PP)]2+ (PP = diphosphine ligand) yielding the 1:1 complex 5.  相似文献   

19.
An enhancement of the target/nontarget ratio of radioactivity levels enables reliable diagnosis and therapy using polypeptide radiopharmaceuticals in nuclear medicine. In the present study, we investigated the effects of the physicochemical properties of radiometabolites on the radioactivity pharmacokinetics after administration of 99mTc-labeled polypeptides using 6-hydrazinopyridine-3-carboxylic acid (HYNIC). Four ternary ligands (L) [3-benzoylpyridine (BP), 3-acetylpyridine (AP), 3-nicotinic acid (NIC), pyridine (PY)] with different lipophilicity were selected as coligands for the preparation of 99mTc-HYNIC-polypeptides. Each of the ternary ligands tested provided 99mTc-HYNIC-labeled galactosyl-neoalbumin (NGA) and Fab fragments of high stability with high radiochemical purity. Moreover, after administration of each 99mTc-HYNIC-labeled NGA into normal mice, the respective ternary ligand [99mTc](HYNIC-lysine)(tricine)(L) complexes were generated as final radiometabolites in the hepatic lysosome. The partition coefficients of [99mTc](HYNIC-lysine)(tricine)(BP), [99mTc](HYNIC-lysine)(tricine)(AP), [99mTc](HYNIC-lysine)(tricine)(NIC), and [99mTc](HYNIC-lysine)(tricine)(PY) were determined to be -2.21, -2.37, -2.93, and -2.73, respectively. Elimination rates of these radiometabolites from the lysosome were enhanced in the order of increasing lipophilicity of the radiometabolites. After injection of the four 99mTc-HYNIC-labeled Fab fragments into normal mice, blood clearances of radioactivity were similar while radioactivity elimination rates from the kidney were enhanced in the order of increasing lipophilicity of the radiometabolites. The present study indicated that the lipophilicity of the radiometabolites constitutes one important factor affecting their elimination rates from the tissues. Thus, as ternary ligands facilitate alteration of the physicochemical properties of radiometabolites, the use of ternary ligand complexes might be applicable for controlling the pharmacokinetics of 99mTc-labeled polypeptides.  相似文献   

20.
Radioactive-iodine-labeled meta-iodobenzylguanidine (MIBG) is currently being used as an in vivo imaging agent to evaluate neuroendocrine tumors as well as the myocardial sympathetic nervous system in patients with myocardial infarct and cardiomyopathy. It is generally accepted that MIBG is an analogue of norepinephrine and its uptake in the heart corresponds to the distribution of norepinephrine and the density of sympathetic neurons. A series of MIBG derivatives containing suitable chelating functional groups N2S2 for the formation of [TcvO]3+N2S2 complex was successfully synthesized, and the 99mTc-labeled complexes were prepared and tested in rats. One of the compounds, [99mTc]2, tested showed significant, albeit lower, heart uptakes post iv injection in rats (0.21% dose/g at 4 h) as compared to [125I]MIBG (1.7% dose/g at 4 h). The heart uptake of the 99mTc-labeled complex appears to be specific and can be reduced by co-injection with nonradioactive MIBG or by pretreatment with desipramine, a selective norepinephrine transporter inhibitor. Further evaluation of the in vitro uptake of [99mTc]2 in cultured neuroblastoma cells displayed consistently lower, but measurable uptake (approximately 10% of that for [125I]MIBG). These preliminary results suggested that the mechanisms of heart uptake of [99mTc]2 may be related to those for [125I]MIBG uptake. If suitable 99mTc-labeled MIBG derivatives can be further developed, the prevalent availability of 99mTc in nuclear medicine clinics will allow them to be readily available for widespread application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号