首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenovirus vector expressing functional herpes simplex virus ICP0.   总被引:3,自引:7,他引:3       下载免费PDF全文
X X Zhu  C S Young    S Silverstein 《Journal of virology》1988,62(12):4544-4553
  相似文献   

2.
3.
Using Vero cells transformed with the wild-type gene for ICP4 as the permissive host cell, we isolated herpes simplex virus type 1 (HSV-1) mutants containing deletions in both copies of the ICP4 gene. The mutants, d120 and d202, contained deletions of 4.1 and 0.5 kilobases, respectively, in each copy of ICP4. ICP4 mRNA synthesized in d202-infected Vero cells was 0.5 kilobases smaller than that synthesized in cells infected with the wild-type virus. No ICP4 mRNA was detected in d120-infected Vero cells. d120 and d202 specified polypeptides that reacted with ICP4 antiserum and were smaller than the wild-type ICP4 polypeptide by 130 and 30 kilodaltons, respectively. The only other HSV-1 gene products detectable on infection of Vero cells with d120 and d202 were ICP6 (of the early kinetic class of HSV-1 polypeptides), ICP0 (immediate early), ICP22 (immediate early), and ICP27 (immediate early). Immediate-early polypeptides ICP0 and ICP27 were expressed to a higher level in Vero cells infected with an ICP4 temperature-sensitive (ts) mutant (tsB32) at 39 degrees C, indicating immediate-early stimulatory activity associated with the ts ICP4 polypeptide. In addition, the patterns of complementation of d120, d202, and tsB32 in ICP4-transformed cells also demonstrated inhibitory activity associated with the ts form of the ICP4 polypeptide.  相似文献   

4.
The herpes simplex virus type 1 (HSV-1) immediate-early (IE) regulatory protein infected-cell protein 0 (ICP0) is a strong and global transactivator of both viral and cellular genes. In a previous study, we reported that ICP0 is highly phosphorylated and contains at least seven distinct phosphorylation signals as determined by phosphotryptic peptide mapping (D. J. Davido et al., J. Virol. 76:1077-1088, 2002). Since phosphorylation affects the activities of many viral regulatory proteins, we sought to determine whether the phosphorylation of ICP0 affects its functions. To address this question, it was first necessary to identify the regions of ICP0 that are phosphorylated. For this purpose, ICP0 was partially purified, and phosphorylation sites were mapped by microcapillary high-pressure liquid chromatography tandem mass spectrometry. Three phosphorylated regions containing 11 putative phosphorylation sites, all within or adjacent to domains important for the transactivating activity of ICP0, were identified. The 11 sites were mutated to alanine as clusters in each of the three regions by site-directed mutagenesis, generating plasmids expressing mutant forms of ICP0: Phos 1 (four mutated sites), Phos 2 (three mutated sites), and Phos 3 (four mutated sites). One-dimensional phosphotryptic peptide analysis confirmed that the phosphorylation state of each Phos mutant form of ICP0 is altered relative to that of wild-type ICP0. In functional assays, the ICP0 phosphorylation site mutations affected the subcellular and subnuclear localization of ICP0, its ability to alter the staining pattern of the nuclear domain 10 (ND10)-associated protein PML, and/or its transactivating activity in Vero cells. Only mutations in Phos 1, however, impaired the ability of ICP0 to complement the replication of an ICP0 null mutant in Vero cells. This study thus suggests that phosphorylation is an important regulator of ICP0 function.  相似文献   

5.
F Yao  P A Schaffer 《Journal of virology》1994,68(12):8158-8168
The herpes simplex virus type 1 immediate-early protein ICP0 enhances expression of a spectrum of viral genes alone and synergistically with ICP4. To test whether ICP0 and ICP4 interact physically, we performed far-Western blotting analysis of proteins from mock-, wild-type-, and ICP4 mutant virus-infected cells with in vitro-synthesized [35S]Met-labeled ICP0 and ICP4 as probes. The ICP4 and ICP0 polypeptides synthesized in vitro exhibited molecular weights similar to those of their counterparts in herpes simplex virus type 1-infected cells, and the in vitro-synthesized ICP4 was able to bind to a probe containing the ICP4 consensus binding site. Far-Western blotting experiments demonstrated that ICP0 interacts directly and specifically with ICP4 and with itself. To further define the interaction between ICP0 and ICP4, we generated a set of glutathione S-transferase (GST)-ICP0 fusion proteins that contain GST and either ICP0 N-terminal amino acids 1 to 244 or 1 to 394 or C-terminal amino acids 395 to 616 or 395 to 775. Using GST-ICP0 fusion protein affinity chromatography and in vitro-synthesized [35S]Met-labeled ICP0 and ICP4, ICP4 was shown to interact preferentially with the fusion protein containing ICP0 C-terminal amino acids 395 to 775, whereas ICP0 interacted efficiently with both the N-terminal GST-ICP0 fusion proteins and the C-terminal GST-ICP0 fusion proteins containing amino acids 395 to 775. Fusion protein affinity chromatography also demonstrated that the C-terminal 235 amino acid residues of ICP4 are important for efficient interaction with ICP0. Collectively, these results reveal a direct and specific physical interaction between ICP0 and ICP4.  相似文献   

6.
Recent studies have shown that ICP4, one of the major immediate-early proteins of herpes simplex virus type 1 is present within the tegument region of the virion (F. Yao and R. J. Courtney, J. Virol. 63:3338-3344, 1989). With monoclonal antibodies to two additional immediate-early proteins, ICP0 and ICP27, and Western blot (immunoblot) analysis, ICP0, but not ICP27, was also found to be associated with purified virus particles. In an effort to localize the ICP0 within the virion, purified virions were treated with trypsin in the presence and absence of detergent. The data suggest that ICP0 is located within the tegument region of the virion and is not localized in the envelope or within the nucleocapsid. The number of molecules of ICP0 per virion was estimated to be approximately 150.  相似文献   

7.
Relative to wild-type herpes simplex virus type 1 (HSV-1), ICP0-null mutant viruses reactivate inefficiently from explanted, latently infected mouse trigeminal ganglia (TG), indicating that ICP0 is not essential for reactivation but plays a central role in enhancing the efficiency of reactivation. The validity of these findings has been questioned, however, because the replication of ICP0-null mutants is impaired in animal models during the establishment of latency, such that fewer mutant genomes than wild-type genomes are present in latently infected mouse TG. Therefore, the reduced number of mutant viral genomes available to reactivate, rather than mutations in the ICP0 gene per se, may be responsible for the reduced reactivation efficiency of ICP0-null mutants. We have recently demonstrated that optimization of the size of the ICP0 mutant virus inoculum and transient immunosuppression of mutant-infected mice with cyclophosphamide can be used to establish wild-type levels of ICP0-null mutant genomes in latently infected TG (W. P. Halford and P. A. Schaffer, J. Virol. 74:5957-5967, 2000). Using this procedure to equalize mutant and wild-type genome numbers, the goal of the present study was to determine if, relative to wild-type virus, the absence of ICP0 function in two ICP0-null mutants, n212 and 7134, affects reactivation efficiency from (i) explants of latently infected TG and (ii) primary cultures of latently infected TG cells. Although equivalent numbers of viral genomes were present in TG of mice latently infected with either wild-type or mutant viruses, reactivation of n212 and 7134 from heat-stressed TG explants was inefficient (31 and 37% reactivation, respectively) relative to reactivation of wild-type virus (KOS) (95%). Similarly, n212 and 7134 reactivated inefficiently from primary cultures of dissociated TG cells plated directly after removal from the mouse (7 and 4% reactivation, respectively), relative to KOS (60% reactivation). The efficiency and kinetics of reactivation of KOS, n212, and 7134 from cultured TG cells (treated with acyclovir to facilitate the establishment of latency) in response to heat stress or superinfection with a nonreplicating HSV-1 ICP4(-) mutant, n12, were compared. Whereas heat stress induced reactivation of KOS from 69% of latently infected TG cell cultures, reactivation of n212 and 7134 was detected in only 1 and 7% of cultures, respectively. In contrast, superinfection with the ICP4(-) virus, which expresses high levels of ICP0, resulted in the production of infectious virus in nearly 100% of cultures latently infected with KOS, n212, or 7134 within 72 h. Thus, although latent mutant viral genome loads were equivalent to that of wild-type virus, in the absence of ICP0, n212 and 7134 reactivated inefficiently from latently infected TG cells during culture establishment and following heat stress. Collectively, these findings demonstrate that ICP0 is required to induce efficient reactivation of HSV-1 from neuronal latency.  相似文献   

8.
9.
10.
ICP0 is a 110,000-molecular-weight immediate-early protein of herpes simplex virus type 1 (HSV-1) which is encoded by three exons. It has been shown to function as a promiscuous transactivator of a variety of different HSV-1 and non-HSV-1 promoters in transient expression assays. Analysis of mutations which truncated the carboxy-terminal end of this 775-amino-acid (aa) protein demonstrated that a polypeptide which contained only aa 1 to 553 still possessed significant transactivation potential. Additional carboxy-terminal truncations which sequentially removed aa 245 to 553 and thus the remainder of the third exon resulted in the eventual loss of transactivation capability in these mutants. However, further analysis of these truncated derivatives demonstrated that they behaved as dominant-negative mutants to the wild-type polypeptide. Moreover, one of the mutants was found to act as a promiscuous repressor, in that it could dramatically inhibit a variety of HSV-1 promoters, non-HSV-1 promoters, and heterologous transactivator proteins in transient expression assays, despite having lost almost the entire third exon. These results indicate that a domain encoded by the first two exons probably interacts with, and can effectively titrate, the unknown cellular factor(s) through which ICP0 mediates transactivation.  相似文献   

11.
12.
ICP0, a herpes simplex virus immediate-early gene product, is a highly phosphorylated nuclear protein that is a potent activator of virus and host genes. Using biochemical and genetic assays employing plasmids encoding mutant forms of ICP0 and a recombinant adenovirus that expresses ICP0, we mutant forms of ICP0 and a recombinant adenovirus that expresses ICP0, we provide evidence that the protein multimerizes. Some mutant forms of ICP0 were transdominant and interfered with activation of a target reporter gene or with complementation of an ICP0-minus virus.  相似文献   

13.
14.
15.
16.
The classical interferon (IFN)-dependent antiviral response to viral infection involves the regulation of IFN-stimulated genes (ISGs), one being the gene encoding cellular endoribonuclease RNase L, which arrests protein synthesis and induces apoptosis by nonspecifically cleaving rRNA. Recently, the herpes simplex virus type 1 (HSV-1) protein ICP0 has been shown to block the induction of ISGs by subverting the IFN pathway upstream of the 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway. We report that ICP0 also prevents rRNA degradation at late stages of HSV-1 infection, independent of its E3 ubiquitin ligase activity, and that the resultant rRNA degradation is independent of the classical RNase L antiviral pathway. Moreover, the degradation is independent of the viral RNase vhs and is independent of IFN response factor 3. These studies indicate the existence of another, previously unidentified, RNase that is part of the host antiviral response to viral infection.  相似文献   

17.
18.
Isoleucine deprivation of cellular monolayers prior to infection has been reported to result in partial complementation of a herpes simplex virus type 1 (HSV-1) ICP0 null (ICP0) mutant. We now report that glutamine deprivation alone is able to enhance the plating efficiency of an ICP0 virus and that isoleucine deprivation has little or no effect. Because a low glutamine level is associated with stress and because stress is known to induce reactivation, low levels of glutamine may be relevant to the reactivation of HSV-1 from latency. Additionally, we demonstrate that arginine and methionine deprivation result in partial complementation of the ICP0 virus.  相似文献   

19.
20.
K Xia  N A DeLuca    D M Knipe 《Journal of virology》1996,70(2):1061-1071
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号