首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Role of lumican in the corneal epithelium during wound healing   总被引:7,自引:0,他引:7  
Lumican regulates collagenous matrix assembly as a keratan sulfate proteoglycan in the cornea and is also present in the connective tissues of other organs and embryonic corneal stroma as a glycoprotein. In normal unwounded cornea, lumican is expressed by stromal keratocytes. Our data show that injured mouse corneal epithelium ectopically and transiently expresses lumican during the early phase of wound healing, suggesting a potential lumican functionality unrelated to regulation of collagen fibrillogenesis, e. g. modulation of epithelial cell adhesion or migration. An anti-lumican antibody was found to retard corneal epithelial wound healing in cultured mouse eyes. Healing of a corneal epithelial injury in Lum(-/-) mice was significantly delayed compared with Lum(+/-) mice. These observations indicate that lumican expressed in injured epithelium may modulate cell behavior such as adhesion or migration, thus contributing to corneal epithelial wound healing.  相似文献   

2.
Lumican is a small leucine-rich proteoglycan (SLRP) present in the dermal extracellular matrix. Previous data from our laboratory demonstrated that lumican decreases melanoma progression in vivo. Here, we show that melanoma cell migration is decreased by lumican and that this effect is due to an enhanced cell adhesion. The adhesion of A375 human melanoma cells on lumican was dose-dependent and required Mg2+ and Mn2+ divalent cations. Using a panel of monoclonal antibodies directed against integrin subunits, we showed that A375 cells can bind to recombinant lumican through β1 type integrins. Moreover, the use of rhodocetin, an inhibitor of α2 integrin, suggested that this particular subunit might also be involved in the interaction with lumican. The increased β1 integrin-mediated adhesion of melanoma cells to lumican might explain, at least in part, the anti-invasive effect of this SLRP.  相似文献   

3.
Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment.

Highlights

Snail stimulates MMP-14 activity in Snail overexpressing B16F1 melanoma cells but not in HT29 cells; Lumican inhibits the Snail-induced MMP-14 activity in Snail-B16F1 cells; Lumican inhibits the migration and growth of Snail-B16F1 cells in vitro; Lumican inhibits melanoma primary tumor growth of Snail-B16F1 cells in vivo.  相似文献   

4.
Lumican, an extracellular matrix protein of the small leucine-rich proteoglycan family, has been shown to impede melanoma progression by inhibiting cell migration. In the present study, we show that lumican targets α2β1 integrin thereby inhibiting cell migration. A375 melanoma cells were transfected with siRNA directed against the α2 integrin subunit. Compared to A375 control cells, the anti-migratory effect of lumican was abrogated on transfected A375 cells. Moreover, lumican inhibited the chemotactic migration of Chinese hamster ovary (CHO) cells stably transfected with α2 integrin subunit (CHO-A2) but not that of wild-type CHO cells (CHO-WT) lacking this subunit. In contrast to CHO-WT cells, we observed in time-lapse microscopy a decrease of CHO-A2 cell migration speed in presence of lumican. Focal adhesion kinase phosphorylated at tyrosine-397 (pFAK) and total FAK were analysed in CHO-WT and CHO-A2 cells. A significant decrease of the ratio pFAK/FAK was shown in presence of recombinant human lumican. Using solid phase assays, a direct binding between lumican and the α2β1 integrin was demonstrated. This interaction did not involve the glycan moiety of lumican and was cation independent. Lumican was also able to bind the activated I domain of the α2 integrin subunit with a Kd ≥ 200 nM. In conclusion, we demonstrated for the first time that the inhibition of cell migration by lumican depends on a direct binding between the core protein of lumican and the α2β1 integrin.  相似文献   

5.

Background

Increasing number of evidence shows that soluble factors and extracellular matrix (ECM) components provide an optimal microenvironment controlling human bone marrow mesenchymal stem cell (MSC) functions. Successful in vivo administration of stem cells lies in their ability to migrate through ECM barriers and to differentiate along tissue-specific lineages, including endothelium. Lumican, a protein of the small leucine-rich proteoglycan (SLRP) family, was shown to impede cell migration and angiogenesis. The aim of the present study was to analyze the role of lumican in the control of MSC migration and transition to functional endothelial progenitor cell (EPC).

Methodology/Principal Findings

Lumican inhibited tube-like structures formation on Matrigel® by MSC, but not EPC. Since matrix metalloproteinases (MMPs), in particular MMP-14, play an important role in remodelling of ECM and enhancing cell migration, their expression and activity were investigated in the cells grown on different ECM substrata. Lumican down-regulated the MMP-14 expression and activity in MSC, but not in EPC. Lumican inhibited MSC, but not EPC migration and invasion. The inhibition of MSC migration and invasion by lumican was reversed by MMP-14 overexpression.

Conclusion/Significance

Altogether, our results suggest that lumican inhibits MSC tube-like structure formation and migration via mechanisms that involve a decrease of MMP-14 expression and activity.  相似文献   

6.
Cell migration is a multistep process initiated by extracellular matrix components that leads to cytoskeletal changes and formation of different protrusive structures at the cell periphery. Lumican, a small extracellular matrix leucine-rich proteoglycan, has been shown to inhibit human melanoma cell migration by binding to α2β1 integrin and affecting actin cytoskeleton organization. The aim of this study was to determine the effect of lumican overexpression on the migration ability of human colon adenocarcinoma LS180 cells. The cells stably transfected with plasmid containing lumican cDNA were characterized by the increased chemotactic migration measured on Transwell filters. Lumican-overexpressing cells presented the elevated filamentous to monomeric actin ratio and gelsolin up-regulation. This was accompanied by a distinct cytoskeletal actin rearrangement and gelsolin subcellular relocation, as observed under laser scaning confocal microscope. Moreover, LS180 cells overexpressing lumican tend to form podosome-like structures as indicated by vinculin redistribution and its colocalization with gelsolin and actin at the submembrane region of the cells. In conclusion, the elevated level of lumican secretion to extracellular space leads to actin cytoskeletal remodeling followed by an increase in migration capacity of human colon LS180 cells. These data suggest that lumican expression and its presence in ECM has an impact on colon cancer cells motility and may modulate invasiveness of colon cancer.  相似文献   

7.
Lumican is a member of the small leucine-rich proteoglycan (SLRP) family. It contributes to the organisation of the collagen network and plays an important role in cell migration and tissue repair. The present study aimed to determine the influence of lumican expression on adhesion, anchorage-dependent and -independent growth, migration, in vitro invasion and in vivo melanoma growth. For that purpose, B16F1 mouse melanoma cells were stably transfected with an expression plasmid containing the complete lumican cDNA. Lumican expression by tumor cells did not change the proliferative activity of mouse melanoma cells in monolayer culture and did not influence either cell adhesion to extracellular matrix gel or type I collagen or cell spreading on these substrates. In contrast, lumican-transfected cells were characterized by a strong reduction of their anchorage-independent proliferation in agarose gel and capacity to invade extracellular matrix gel. After subcutaneous injections of transfected B16F1 cells in syngenic mice, lumican expression significantly decreased subcutaneous tumor formation in vivo, with a concomitant decrease of cyclin D1 expression. Lumican induced and/or increased the apoptosis of B16F1 cells. The results suggest that lumican is involved in the control of melanoma growth and invasion and may be considered, like decorin, as an anti-tumor factor from the extracellular matrix.  相似文献   

8.
9.
Osteosarcoma is the most common primary bone tumour associated with childhood and adolescence. The possible role of the small leucine-rich proteoglycan, lumican, in the growth and metastasis of various cancer types has recently been investigated. In this study, the expression of lumican was examined in moderately differentiated (MG-63) and well-differentiated (Saos 2) human osteosarcoma cell lines of high and low metastatic capability, respectively. Real-time PCR, western blotting with antibodies against the protein core and keratan sulfate, and specific enzymatic digestions were the methods employed. The two human osteosarcoma cell lines were found to express and secrete lumican partly substituted with keratan sulfate glycosaminoglycans. Importantly, the non-metastatic, well-differentiated Saos 2 cells produced lumican at rates that were up to sevenfold higher than those of highly metastatic MG-63 cells. The utilization of short interfering RNA specific for the lumican gene resulted in efficient down-regulation of its mRNA levels in both cell lines. The growth of Saos 2 cells was inhibited by lumican, whereas their migration and chemotactic response to fibronectin were found to be promoted. Lumican expression was negatively correlated with the basal level of Smad 2 activation in these cells, suggesting that lumican may affect the bioavailability of Smad 2 activators. By contrast, these cellular functions of highly aggressive MG-63 cells were demonstrated not to be sensitive to a decrease in their low endogenous lumican levels. These results suggest that lumican expression may be positively correlated with the differentiation and negatively correlated with the progression of osteosarcoma.  相似文献   

10.
目的:探讨大鼠骨髓间充质干细胞(rBMMSCs)转分化为角膜上皮的潜能,并在体外共培养体系中研究rBMMSCs对促炎细胞因子干扰素-γ(IFN-γ)和肿瘤坏死因子-α(TNF-α)刺激下的人角膜上皮细胞(hCECs)的免疫调节作用。方法采用聚蔗糖梯密度离心法获得rBMMSCs,并通过上皮细胞培养微环境来诱导rBMMSCs分化为上皮样细胞。通过免疫组织化学方法鉴定CD29、CD34、CK5&8和ZO-1等标记物在rBMMSCs及诱导的上皮样细胞中的表达。流式细胞术用来分析CD29/CD34的表达及细胞分化过程中表达量的变化。hCECs单独培养或与rBMMSCs共培养,并采用IFN-γ/TNF-α刺激24或48 h。通过流式细胞术来分析细胞间黏附分子-1(ICAM-1)于IFN-γ/TNF-α刺激前后在hCECs上的表达,并通过黏附分析实验验证rBMMSC条件培养基对单核细胞黏附于IFN-γ/TNF-α刺激后的hCECs的作用。多组间比较采用单因素方差分析(ANOVA),两组间比较采用双侧t检验。结果成功分离rBMMSCs,细胞表达CD29,但不表达CD34。在上皮细胞培养条件中培养5 d,大约4﹪的rBMMSCs可分化为上皮样细胞。此类细胞失去了CD29的标志,转为表达CK5&8和ZO-1。IFN-γ/TNF-α能显著上调hCECs中ICAM-1的表达,在IFN-γ/TNF-α处理24 h和48 h后,ICAM-1分别呈现10倍和8倍的升高,分别达到4524±554.2和3107±329.6(P=0.0025,0.0014)。但与MSC共同培养时,上调作用被显著抑制,ICAM-1平均值为1356±325.6(24 h)与1323±106.6(48 h)(P=0.0079,0.0024)。MSC条件培养基可显著抑制单核细胞对hCECs的黏附作用,黏附细胞数从(10.01±3.01)×10^3/ml细胞降至(2.21±0.19)×10^3/ml细胞(P=0.0271)。结论rBMMSCs可转分化为角膜上皮样细胞,并抑制由促炎细胞因子诱导的ICAM-1在hCECs上的表达,同时对促炎细胞因子诱导的单核细胞的黏附性具有抑制作用,提示BMMSCs具有在角膜炎症疾病和损伤修复中的治疗潜能。  相似文献   

11.
Adult stem cells are important cell sources in regenerative medicine, but isolating them is technically challenging. This study employed a novel strategy to generate stem-like corneal epithelial cells and promote the functional properties of these cells by coculture with embryonic stem cells. The primary corneal epithelial cells were labelled with GFP and cocultured with embryonic stem cells in a transwell or by direct cell-cell contact. The embryonic stem cells were pre-transfected with HSV-tk-puro plasmids and became sensitive to ganciclovir. After 10 days of coculture, the corneal epithelial cells were isolated by treating the cultures with ganciclovir to kill the embryonic stem cells. The expression of stem cell-associated markers (ABCG2, p63) increased whereas the differentiation mark (Keratin 3) decreased in corneal epithelial cells isolated from the cocultures as evaluated by RT-PCR and flow cytometry. Their functional properties of corneal epithelial cells, including cell adhesion, migration and proliferation, were also enhanced. These cells could regenerate a functional stratified corneal epithelial equivalent but did not form tumors. Integrin β1, phosphorylated focal adhesion kinase and Akt were significantly upregulated in corneal epithelial cells. FAK Inhibitor 14 that suppressed the expression of phosphorylated focal adhesion kinase and Akt inhibited cell adhesion, migration and proliferation. LY294002 that suppressed phosphorylated Akt but not phosphorylated focal adhesion kinase inhibited cell proliferation but had no effect on cell adhesion or migration. These findings demonstrated that the functional properties of stem-like corneal epithelial cells were enhanced by cocultured embryonic stem cells via activation of the integrin β1-FAK-PI3K/Akt signalling pathway.  相似文献   

12.
Kao WW  Liu CY 《Glycoconjugate journal》2002,19(4-5):275-285
Lumican and keratocan are members of the small leucine-rich proteoglycan (SLRP) family, and are the major keratan sulfate (KS) proteoglycans in corneal stroma. Both lumican and keratocan are essential for normal cornea morphogenesis during embryonic development and maintenance of corneal topography in adults. This is attributed to their bi-functional characteristic (protein moiety binding collagen fibrils to regulate collagen fibril diameters, and highly charged glycosaminoglycan (GAG) chains extending out to regulate interfibrillar spacings) that contributes to their regulatory role in extracellular matrix assembly. The absence of lumican leads to formation of cloudy corneas in homozygous knockout mice due to altered collagenous matrix characterized by larger fibril diameters and disorganized fibril spacing. In contrast, keratocan knockout mice exhibit thin but clear cornea with insignificant alteration of stromal collaegenous matrix. Mutations of keratocan cause cornea plana in human, which is often associated with glaucoma. These observations suggest that lumican and keratocan have different roles in regulating formation of stromal extracellular matrix. Experimental evidence indicates that lumican may have additional biological functions, such as modulation of cell migration and epithelium-mesenchyme transition in wound healing and tumorgenesis, besides regulating collagen fibrillogenesis. Published in 2003.  相似文献   

13.
The purpose of this study was to evaluate the potential value of different epithelial cell culture systems as in vitro models for studying corneal permeability. Transformed human corneal epithelial (HCE-T) cells and Statens Serum Institut rabbit corneal (SIRC) cells were cultured on permeable filters. SkinEthic human corneal epithelium (S-HCE) and Clonetics human corneal epithelium (C-HCE) were received as ready-to-use systems. Excised rabbit corneas (ERCs) and human corneas (EHCs) were mounted in Ussing chambers, and used as references. Barrier properties were assessed by measuring transepithelial electrical resistance, and by determining the apparent permeability of markers with different physico-chemical properties, namely, fluorescein, sodium salt; propranolol hydrochloride; moxaverine hydrochloride; timolol hydrogenmaleate; and rhodamine 123. SIRC cells and the S-HCE failed to develop epithelial barrier properties, and hence were unable to distinguish between the permeation markers. Barrier function and the power to differentiate compound permeabilities were evident with HCE-T cells, and were even more pronounced in the case of C-HCE, corresponding very well with data from ERCs and EHCs. A net secretion of rhodamine 123 was not observed with any of the models, suggesting that P-glycoprotein or similar efflux systems have no significant effects on corneal permeability. Currently available corneal epithelial cell culture systems show differences in epithelial barrier function. Systems lacking functional cell-cell contacts are of limited value for assessing corneal permeability, and should be critically evaluated for other purposes.  相似文献   

14.
One important action of growth factors is their participation in tissue repair; however, the signaling pathways involved are poorly understood. In a model of corneal wound healing, we found that two paracrine growth factors, hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF), induced rapid and marked activation and prompt nuclear accumulation of phospho-p38 (p-p38) and -ERK1/2 (p-ERK1/2), but not of JNK (p-JNK1/2), in corneal epithelial cells. Interruption of p38 and ERK1/2 signaling pathways by pretreatment with inhibitors SB203580 and PD98059 and subsequent stimulation with HGF or KGF abolished the activation and nuclear localization. Inhibition of either one of these mitogen-activated protein kinases, p38 or ERK1/2, induced a robust cross-activation of the other. In immunofluorescence studies of wounded cornea, p-p38, unlike p-ERK1/2, was immediately detectable in epithelium after injury. Inhibition of p38 by SB203580 blocked migration of epithelial cells almost completely. In contrast, PD98059 seemed to slightly increase the migration, through concomitant activation of p38. Unlike ERK1/2, p38 did not significantly contribute to proliferation of epithelial cells. Inhibition of either the ERK1/2 or p38 pathway resulted in delayed corneal epithelial wound healing. Interruption of both signaling cascades additively inhibited the wound-healing process. These findings demonstrate that both p38 and ERK1/2 coordinate the dynamics of wound healing: while growth factor-stimulated p38 induces epithelial migration, ERK1/2 activation induces proliferation. The cross-talk between these two signal cascades and the selective action of p38 in migration appear to be important to corneal wound healing, and possibly wound healing in general, and may offer novel drug targets for tissue repair.  相似文献   

15.
Lumican, a small leucine-rich proteoglycan of the extracellular matrix, presents potent anti-tumor properties. Previous works from our group showed that lumican inhibited melanoma cell migration and tumor growth in vitro and in vivo. Melanoma cells adhered to lumican, resulting in a remodeling of their actin cytoskeleton and preventing their migration. In addition, we identified a sequence of 17 amino acids within the lumican core protein, named lumcorin, which was able to inhibit cell chemotaxis and reproduce anti-migratory effect of lumican in vitro. The aim of the present study was to characterize the anti-tumor mechanism of action of lumcorin. Lumcorin significantly decreased the growth in monolayer and in soft agar of two melanoma cell lines – mice B16F1 and human SK-MEL-28 cells – in comparison to controls. Addition of lumcorin to serum free medium significantly inhibited spontaneous motility of these two melanoma cell lines. To characterize the mechanisms involved in the inhibition of cell migration by lumcorin, the status of the phosphorylation/dephosphorylation of proteins was examined. Inhibition of focal adhesion kinase phosphorylation was observed in presence of lumcorin. Since cancer cells have been shown to migrate and to invade by mechanisms that involve matrix metalloproteinases (MMPs), the expression and activity of MMPs were analyzed. Lumcorin induced an accumulation of an intermediate form of MMP-14 (~59kDa), and inhibited MMP-14 activity. Additionally, we identified a short, 10 amino acids peptide within lumcorin sequence, which was able to reproduce its anti-tumor effect on melanoma cells. This peptide may have potential pharmacological applications.  相似文献   

16.
Lumican belongs to the family of small leucine-rich repeat proteoglycans. Recent studies have shown that lumican participates in the maintenance of tissue homeostasis and modulates cellular functions including cell proliferation, migration, and differentiation. The expression of lumican has been correlated to the growth and metastasis of various malignancies; however, its exact role in tumorogenesis remains elusive. This review focuses upon the role of lumican in cell biology, providing insights into molecular mechanisms that lumican likely utilizes to control processes relevant to tumorogenesis.  相似文献   

17.
Human osteosarcoma cell lines were recently shown to express and secrete the small leucine rich proteoglycan (SLRP) lumican, with the ability to regulate the growth and motility of these cells. In this study, lumican-deficient Saos 2 cells were demonstrated to have increased adhesive capability onto fibronectin (FN) (p≤0.01). Upon neutralization of endogenous transforming growth factor β2 (TGF-β2) activity, no difference in the ability of lumican siRNA-transfected and scramble siRNA-transfected Saos 2 cells to adhere onto FN was detected (p=NS). Exogenous TGF-β2 was shown to stimulate Saos 2 cell adhesion to FN (p≤0.01). These results therefore, suggest that the inverse correlation existing between lumican expression and Saos 2 cell adhesion is dependent on active TGF-β2 signaling. Furthermore, the significant increase in Smad 2 activation present in lumican-deficient cells (p≤0.01) was annulled in the presence of the anti-TGF-β2 peptide, demonstrating that lumican is an upstream regulator of the TGF-β2/Smad 2 signaling cascade. Crucial to FN-dependent adhesion, β1 integrin expression and pFAK activation were likewise identified as downstream TGF-β2 effectors regulated by lumican expression. In conclusion, this study demonstrates a novel out-in signaling circuit in human osteosarcoma cells: secreted to extracellular matrix lumican is an endogenous inhibitor of TGF-β2 activity, resulting in downstream effector modulation including pSmad 2, integrin β1 and pFAK to regulate osteosarcoma adhesion.  相似文献   

18.
To examine the roles of TGFbeta isoforms on corneal morphogenesis, the eyes of mice that lack TGFbetas were analyzed at different developmental stages for cell proliferation, migration and apoptosis, and for expression patterns of keratin 12, lumican, keratocan and collagen I. Among the three Tgfb(-/-) mice, only Tgfb2(-/-) mice have abnormal ocular morphogenesis characterized by thin corneal stroma, absence of corneal endothelium, fusion of cornea to lens (a Peters'-like anomaly phenotype), and accumulation of hyaline cells in vitreous. In Tgfb2(-/-) mice, fewer keratocytes were found in stroma that has a decreased accumulation of ECM; for example, lumican, keratocan and collagen I were greatly diminished. The absence of TGFbeta2 did not compromise cell proliferation, nor enhance apoptosis. The thinner stroma resulting from decreased ECM synthesis may account for the decreased cell number in the stroma of Tgfb2 null mice. Keratin 12 expression was not altered in Tgfb2(-/-) mice, implicating normal corneal type epithelial differentiation. Delayed appearance of macrophages in ocular tissues was observed in Tgfb2(-/-) mice. Malfunctioning macrophages may account for accumulation of cell mass in vitreous of Tgfb2 null mice.  相似文献   

19.
AIMS: Lumican, a small leucine-rich proteoglycan (SLRP), has attracted attention as a molecule of the extracellular matrix possibly involved in signalling pathways affecting cancer cell behaviour. The remodelling of the actin cytoskeleton, induced in response to external stimuli, is crucial for cell motility and intracellular signal transduction. The main goal of this study was to examine the effects of recombinant lumican on actin organization, the state of actin polymerization, actin isoform expression, and their sub-cellular distribution in the A375 human melanoma cell line. MAIN METHODS: Fluorescence and confocal microscopy were used to observe actin cytoskeletal organization and the sub-cellular distribution of cytoplasmic beta- and gamma-actins. The ability of actin to inhibit DNaseI activity was used to quantify actin. Western blotting and real-time PCR were used to determine the expression levels of the actin isoforms. KEY FINDINGS: A375 cells grown on lumican coatings changed in morphology and presented rearranged actin filament organization: from filaments evenly spread throughout the whole cell body to their condensed sub-membrane localization. In the presence of lumican, both actin isoforms were concentrated under the cellular membrane. A statistically significant increase in the total, filamentous, and monomeric actin pools was observed in A375 cells grown on lumican. SIGNIFICANCE: Novel biological effects of lumican, an extracellular matrix SLRP, on the actin pool and organization are identified, which may extend our understanding of the mechanism underlying the inhibitory effect of lumican on the migration of melanoma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号