首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Bone marrow stromal cells (MSCs) can be expanded rapidly in vitro and have the potential to be differentiated into neuronal, glial and endodermal cell types. However, induction for differentiation does not always have stable result. We present a new method for efficient induction and acquisition of neural progenitors, neuronal- and glial-like cells from MSCs. We demonstrate that rat MSCs can be induced to neurospheres and most cells are positive for nestin, which is an early marker of neuronal progenitors. In addition, we had success in proliferation of these neurospheres with undifferentiated characteristics and finally we could obtain large numbers of neuronal and glial phenotypes. Many of the cells expressed beta-tubulin III when they were cultivated with our method. MSCs can become a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system.  相似文献   

2.
In this study, we examined the phenotypic characteristics of human umbilical cord blood-derived mesenchymal stromal cells (UCB-derived MSCs) differentiated along an oligodendrocyte pathway. We induced human UCB-derived MSCs to form floating neurospheres, and these neurospheres were then induced to differentiate into oligodendrocyte progenitor-like cells using multiple induction factors. Differentiated UCB-derived MSCs showed morphologic characteristics of an oligodendrocyte phenotype. The expression of cell surface markers characteristic of oligodendrocyte progenitor cells or oligodendrocytes was determined by immunocytochemical staining. These results suggest that human UCB-derived MSCs can be induced to differentiate into cells with an oligodendrocyte phenotype and that these cells may have potential in the future cellular therapy of central neurological disorders.  相似文献   

3.
The effects of mesenchymal stem cells (MSCs) on proliferation and cell fate determination of neural stem cells (NSCs) have been investigated. NSCs were co-cultured with MSCs or NIH3T3 cells using an in vitro transwell system. After 4 days, immunofluorescence staining showed that the number of cells positive for the cell proliferation antigen, ki-67, in neurospheres in MSCs was greater than in NIH3T3 cells. In some experiments, the top-layers of MSCs and NIH3T3 cells were removed to induce NSCs differentiation. Seven days after initiating differentiation, the levels of the neuronal marker, NSE, were higher in NSCs in MSCs co-culture group, and those of glial fibrillary acidic protein (GFAP) were lower, compared with NIH3T3 cells co-culture group. These were confirmed by immunofluorescence. The role of the Notch signaling pathway analyzed with the specific inhibitor, DAPT, and by examining the expression of Notch-related genes using RT-PCR showed that after co-culturing with MSCs for 24 h, NSCs expressed much higher levels of ki-67, Notch1, and Hes1 than did NSCs co-cultured with NIH3T3 cells. Treatment with DAPT decreased ki-67, Notch1 and Hes1 expression in NCSs, and increased Mash1 expression. The data indicate that the interactions between MSCs and NSCs promote NSCs proliferation and are involved in specifying neuronal fate, mediated in part by Notch signaling.  相似文献   

4.
Human mesenchymal stem cells (MSCs) are considered a promising tool for cell-based therapies of nervous system diseases. Bone marrow (BM) has been the traditional source of MSCs (BM-MSCs). However, there are some limitations for their clinical use, such as the decline in cell number and differentiation potential with age. Recently, amniotic fluid (AF)-derived MSCs (AF-MSCs) have been shown to express embryonic and adult stem cell markers, and can differentiate into cells of all three germ layers. In this study, we isolated AF-MSCs from second-trimester AF by limiting dilution and compared their proliferative capacity, multipotency, neural differentiation ability, and secretion of neurotrophins to those of BM-MSCs. AF-MSCs showed a higher proliferative capacity and more rapidly formed and expanded neurospheres compared to those of BM-MSCs. Both immunocytochemical and quantitative real-time PCR analyses demonstrated that AF-MSCs showed higher expression of neural stemness markers than those of BM-MSCs following neural stem cell (NSC) differentiation. Furthermore, the levels of brain-derived growth factor and nerve growth factor secreted by AF-MSCs in the culture medium were higher than those of BM-MSCs. In addition, AF-MSCs maintained a normal karyotype in long-term cultures after NSC differentiation and were not tumorigenic in vivo. Our findings suggest that AF-MSCs are a promising and safe alternative to BM-MSCs for therapy of nervous system diseases.  相似文献   

5.
Wnt proteins promote neuronal differentiation in neural stem cell culture   总被引:36,自引:0,他引:36  
Wnt signaling is implicated in the control of cell growth and differentiation during CNS development from studies of mouse and chick models, but its action at the cellular level has been poorly understand. In this study, we examine the in vitro function of Wnt signaling in embryonic neural stem cells, dissociated from neurospheres derived from E11.5 mouse telencephalon. Conditioned media containing active Wnt-3a proteins are added to the neural stem cells and its effect on regeneration of neurospheres and differentiation into neuronal and glial cells was examined. Wnt-3a proteins inhibit regeneration of neurospheres, but promote differentiation into MAP2-positive neuronal cells. Wnt-3a proteins also increase the number of GFAP-positive astrocytes but suppress the number of oligodendroglial lineage cells expressing PDGFR or O4. These results indicate that Wnt-3a signaling can inhibit the maintenance of neural stem cells, but rather promote the differentiation of neural stem cells into several cell lineages.  相似文献   

6.
体外神经干细胞克隆球的超微结构-透射电镜观察   总被引:5,自引:0,他引:5  
许汉鹏  卢春蓉  苟琳  鞠躬 《细胞生物学杂志》2002,24(4):251-254,T004
为观察培养的神经干细胞克隆球内部的超微结构特征,采用无血清培养技术,在体外进行小鼠纹状体神经干细胞克隆球的培养传代,经过免疫细胞化学鉴定后,对单一的神经干细胞克隆球进行固定,常规透射电镜观察。结果表明,神经干细胞可以在bFGF等生长因子存在的情况下,在无血清培养液内增殖生成悬浮状态的神经干细胞克隆球,这种克隆可被诱导生成神经细胞和神经胶质细胞,电镜下,神经干细胞克隆球内部细胞相互间可形成特化的膜性结构,细胞内可有小泡出现,部分细胞有凋亡的形态。  相似文献   

7.
目的:研究银杏内酯B(GB)诱导大鼠骨髓间充质细胞(MSCs)分化为神经元样细胞的电生理特性。方法:应用膜片钳技术,采用全细胞记录方式,对由GB诱导的大鼠MSCs进行诱导前后的电生理功能测定。结果:分化后的神经元样细胞较诱导前细胞的膜特性有了显著改变(P<0.05)。结论:大鼠MSCs经过GB诱导能够向功能性神经元方向分化。  相似文献   

8.
Mesenchymal stem cells (MSCs) are a heterogeneous population of stem/progenitor cells with pluripotent capacity to differentiate into mesodermal and non‐mesodermal cell lineages, including osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes, fibroblasts, myofibroblasts, epithelial cells, and neurons. MSCs reside primarily in the bone marrow, but also exist in other sites such as adipose tissue, peripheral blood, cord blood, liver, and fetal tissues. When stimulated by specific signals, these cells can be released from their niche in the bone marrow into circulation and recruited to the target tissues where they undergo in situ differentiation and contribute to tissue regeneration and homeostasis. Several characteristics of MSCs, such as the potential to differentiate into multiple lineages and the ability to be expanded ex vivo while retaining their original lineage differentiation commitment, make these cells very interesting targets for potential therapeutic use in regenerative medicine and tissue engineering. The feasibility for transplantation of primary or engineered MSCs as cell‐based therapy has been demonstrated. In this review, we summarize the current knowledge on the signals that control trafficking and differentiation of MSCs. J. Cell. Biochem. 106: 984–991, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
间充质干细胞特性与应用前景   总被引:3,自引:0,他引:3  
仵敏娟  刘善荣  刘厚奇 《生命科学》2004,16(3):135-137,169
间充质干细胞是中胚层发育的早期细胞,具备干细胞的基本特性。在发育的不同阶段和特定环境条件下,间充质干细胞可向骨、软骨、肌肉、神经、血管及血液细胞等多种方向分化。在成体的很多器官和组织中也存在着间充质干细胞,以备修复和再生所用。间充质干细胞易于体外培养,扩增迅速,可以分化为多种细胞,为干细胞生物工程提供了一个很好的种子细胞。在明确间充质干细胞生物学特性和分化的机制后,可在体外和体内将其定向诱导分化为多种细胞。间充质干细胞具有巨大的临床应用价值和科学研究价值。  相似文献   

10.
Multipotent mesenchymal stromal cells(MSC),have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation.The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair.However,some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist.In brain,perivascular MSCs like pericytes and adventitial cells,could constitute another stem cell population distinct to the neural stem cell pool.The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes,the demonstration of neural biomarkers expression,electrophysiological recordings,and the absence of cell fusion.The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells.It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.  相似文献   

11.
Bone marrow MSCs (mesenchymal stem cells) can differentiate into various tissue cells, including epithelial cells. This presents interesting possibilities for cellular therapy, but the differentiation efficiency of MSCs is very low. We have explored specific inducing factors to improve the epithelial differentiation efficiency of MSCs. Under inducing conditions, MSCs differentiated into epithelial cells and expressed several airway epithelial markers using RTE (rat tracheal epithelial) cell secretions. Rat cytokine antibody array was used to detect cytokines of the RTE secretion components, in which 32 kinds of protein were found. Seven proteins [TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), VEGF (vascular endothelial growth factor), BDNF (brain-derived neurotrophic factor), TGFβ1 (transforming growth factor β1), MMP-2 (metalloproteinases-2), OPN (osteopontin) and activin A in RTE secretions] were assayed using ELISA kits. The four growth factors (VEGF, BDNF, TGFβ1 and activin A) were involved in regulating stem cell growth and differentiation. We speculated that these four play a vital role in the differentiation of MSCs into epithelial cells by triggering appropriate signalling pathways. To induce epithelial differentiation, MSCs were cultured using VEGF, BDNF, TGFβ1 and activin A. Differentiated MSCs were characterized both morphologically and functionally by their capacity to express specific markers for epithelial cells. The data demonstrated that MSCs can differentiate into epithelial cells induced by these growth factors.  相似文献   

12.
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into a wide range of cell types and provide a potential to transfer therapeutic protein in vivo, making them valuable candidates for gene therapy and cell therapy. However, using MSCs in in vivo is limited due to the low rate of transfection and transduction efficacy. Therefore, developing methods to efficiently transfer genes into MSCs would provide a number of opportunities for using them in the clinic. Here, we introduce a simple and robust method for efficient transduction of human adipose-derived MSCs by modification under the culture condition of human embryonic kidney cells 293 (HEK293T) and MSCs. Moreover, as a transduction enhancer, polybrene was replaced with Lipofectamine, a cationic lipid. Therefore, we showed that transduction of primary cells can be increased efficiently by modifying the culture condition.  相似文献   

13.
14.
Mesenchymal stem cells (MSCs) can differentiate into a variety of cell types. MSCs exist in several tissues such as the bone marrow, adipose, muscle, cartilage, and tendon. This differentiation potential makes MSCs candidates for cell-based therapeutic strategies for mesenchymal tissue injuries. MSCs can be prepared from bone marrow (BM-MSCs) and adipose (AD-MSCs); however, these MSCs exhibit senescence-associated growth arrest and display inevitable heterogeneity. We established several AD-MSC cell lines from a p53-knockout (KO) mouse. These cell lines were immortalized, but no cell lines grew anchorage-independently, suggesting that they are not cancerous. They differentiated into adipocytes, osteoblasts, and chondrocytes by treatment with certain stimuli. Moreover, following injection into the tail vein, the cells migrated into the wounded region of the liver and differentiated into hepatocytes. We succeeded in establishing several AD-MSC clonal cell lines that maintain the tissue-specific markers and characteristics of the developmental phase. These clonal cell lines will serve as important tools to study the mechanism of differentiation of MSCs.  相似文献   

15.
The adult bone marrow, situated within the bone cavity, comprises three distinct stem cell populations: hematopoietic stem cells (HSCs), mesenchymal stromal/stem cells (MSCs) and endothelial progenitor/stem cells (EPCs). HSCs are a well-characterized population of self-renewing cells that give rise to all blood cells. The definition of MSCs is more complex due to the limited understanding of MSC properties. In general, MSCs are considered multipotent stromal cells that are able to differentiate into various cell types, including osteoblasts, chondrocytes and adipocytes. Compared to HSCs and MSCs, EPCs are a newly discovered population of stem/progenitor cells with the capacity to differentiate into endothelial cells, the cells forming the inner lining of a blood vessel.  相似文献   

16.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.  相似文献   

17.
Transdifferentiated and untransdifferentiated mesenchymal stem cells (MSCs) have shown therapeutic benefits in central nervous system (CNS) injury. However, it is unclear which would be more appropriate for transplantation. To address this question, we transplanted untransdifferentiated human umbilical mesenchymal stem cells (HUMSCs) and transdifferentiated HUMSCs (HUMSC-derived neurospheres, HUMSC-NSs) into a rat model of traumatic brain injury. Cognitive function, cell survival and differentiation, brain tissue morphology and neurotrophin expression were compared between groups. Significant improvements in cognitive function and brain tissue morphology were seen in the HUMSCs group compared with HUMSC-NSs group, which was accompanied by increased neurotrophin expression. Moreover, only few grafted cells survived in both the HUMSCs and HUMSC-NSs groups, with very few of the cells differentiating into neural-like cells. These findings indicate that HUMSCs are more appropriate for transplantation and their therapeutic benefits may be associated with neuroprotection rather than cell replacement.  相似文献   

18.
BACKGROUND: Mesenchymal stem cells (MSCs) can differentiate into cardiomyocytes if an appropriate cellular environment is provided. Notch signals exchanged between neighboring cells through the Notch receptor can eventually dictate cell differentiation. In our study, we show that MSC differentiation into cardiomyocytes is dependent on the Notch signal. METHODS: We created a myocardial infarction model in rat by coronary ligation, administered direct intramyocardial injection of DAPI-labeled MSC immediately, and observed the differentiation of MSCs after 14 days by immunofluorescence staining against troponin T. We cultured MSCs and cardiomyocytes in four ways, respectively, in vitro. (1) MSCs cocultured with cardiomyocytes obtained from neonatal rat ventricles in a ratio of 1:10. (2) The two types of cells were cultured in two chambers separated by a semipermeable membrane as indirect coculture group. (3) Notch receptor-soluble jagged1 protein was added to indirect coculture group. (4) Both jagged1 protein and gamma-secretase inhibitor-DAPT were added to indirect coculture group. Two weeks later, we observed the differentiation percentage, respectively, by immunofluorescence staining. RESULTS: We found the differentiation of MSCs which were close to cardiomyocytes in vivo. The differentiation percentage of the four cell culture group was 30.13+/-2.16%, 12.52+/-1.18%, 26.33+/-2.20%, and 13.08+/-1.15%. CONCLUSIONS: MSCs can differentiate into cardiomyocytes in vitro and in vivo if a cardiomyocyte microenvironment is provided. 2. Cell-to-cell interaction is very important for the differentiation of MSCs into cardiomyocytes. 3. Jagged1 protein can activate Notch signal and enhance the differentiation of MSC into cardiomyocyte, while the effect can be inhibited by DAPT.  相似文献   

19.
Stem cells have been shown to have the potential to provide a source of cells for applications to tissue engineering and organ repair. The mechanisms that regulate stem cell fate, however, mostly remain unclear. Mesenchymal stem cells (MSCs) are multipotent progenitor cells that are isolated from bone marrow and other adult tissues, and can be differentiated into multiple cell lineages, such as bone, cartilage, fat, muscles and neurons. Although previous studies have focused intensively on the effects of chemical signals that regulate MSC commitment, the effects of physical/mechanical cues of the microenvironment on MSC fate determination have long been neglected. However, several studies provided evidence that mechanical signals, both direct and indirect, played important roles in regulating a stem cell fate. In this review, we summarize a number of recent studies on how cell adhesion and mechanical cues influence the differentiation of MSCs into specific lineages. Understanding how chemical and mechanical cues in the microenvironment orchestrate stem cell differentiation may provide new insights into ways to improve our techniques in cell therapy and organ repair.  相似文献   

20.
It has been demonstrated that the number and differentiating potential of bone marrow mesenchymal stem cells (MSCs) decrease with age. Therefore, the search for alternative sources of MSCs is of significant value. In the present study, MSCs were isolated from umbilical cord blood (UCB) by combining gradient density centrifugation with plastic adherence. Cultured cells were treated with ascorbate acid-2-phosphate, dexamethasone, beta-glycerophosphate dexamethasone, insulin, 1-methyl-3-isobutylxamthine, indomethacin, beta-mercaptoethanol, butylated hydroxyanisole, FGF-4 and HGF. Differentiating characterization of UCB-derived MSCs were detected by cytochemistry, immunocytochemistry, radioimmunoassay, RT-PCR and urea assay. The results showed UCB-derived MSCs could differentiate into osteoblasts, adipocytes and neuron-like cells. When MSCs were cultured with FGF-4 and HGF, approximately 63.6% of cells became small, round and epithelioid on day 28 by morphology. Compared with the control, levels of AFP in the supernatant liquid increased significantly from day 12 and were higher on day 28 (P<0.01). Albumin increased significantly from day 16 (P<0.01). Urea was first detected on day 20 (P<0.01), and continued to increase on day 28 (P<0.01). Cells first expressed CK-18 on day 16 through immunocytochemistry analysis. RT-PCR analysis showed that differentiated cells could express a number of hepatocyte-specific genes in a time-dependent manner. Glycogen storage was first seen on day 24. Our results suggest that UCB-derived MSCs can differentiate not only into osteoblasts, adipocytes and neuron-like cells, but also into hepatocytes. Human UCB-derived MSCs are a new source of cell types for cell transplantation and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号