首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
NPM-ALK is a chimeric tyrosine kinase detected in most anaplastic large cell lymphomas that results from the reciprocal translocation t(2,5)(p23;q35) that fuses the N-terminal domain of nucleophosmin (NPM) to the catalytic domain of the anaplastic lymphoma kinase (ALK) receptor. The constitutive activity of the kinase is responsible for its oncogenicity through the stimulation of several downstream signaling pathways, leading to cell proliferation, migration, and survival. We demonstrated previously that the high level of phosphatidylinositol 5-phosphate measured in NPM-ALK-expressing cells is controlled by the phosphoinositide kinase PIKfyve, a lipid kinase known for its role in vesicular trafficking. Here, we show that PIKfyve associates with NPM-ALK and that the interaction involves the 181-300 region of the oncogene. Moreover, we demonstrate that the tyrosine kinase activity of the oncogene controls PIKfyve lipid kinase activity but is dispensable for the formation of the complex. Silencing or inhibition of PIKfyve using siRNA or the PIKfyve inhibitor YM201636 have no effect on NPM-ALK-mediated proliferation and migration but strongly reduce invasive capacities of NPM-ALK-expressing cells and their capacity to degrade the extracellular matrix. Accordingly, immunofluorescence studies confirm a perturbation of matrix metalloproteinase 9 localization at the cell surface and defect in maturation. Altogether, these results suggest a role for PIKfyve in NPM-ALK-mediated invasion.  相似文献   

2.
PIKfyve: Partners, significance, debates and paradoxes   总被引:2,自引:0,他引:2  
Key components of membrane trafficking and signaling machinery in eukaryotic cells are proteins that bind or synthesize phosphoinositides. PIKfyve, a product of an evolutionarily conserved single-copy gene has both these features. It binds to membrane phosphatidylinositol (PtdIns)3P and synthesizes PtdIns(3,5)P2 and PtdIns5P. Molecular functions of PIKfyve are elusive but recent advances are consistent with a key role in the course of endosomal transport. PIKfyve dysfunction induces endosome enlargement and profound cytoplasmic vacuolation, likely as a result of impaired normal endosome processing and membrane exit out of endosomes. Multicellular organisms with genetically impaired function of PIKfyve or that of the PIKfyve protein partners regulating PtdIns(3,5)P2 homeostasis display severe disorders, including embryonic/perinatal death. This review describes recent advances on PIKfyve functionality in higher eukaryotes, with particular reference to biochemical and genetic insights in PIKfyve protein partners.  相似文献   

3.
Multivesicular body morphology and size are controlled in part by PtdIns(3,5)P(2), produced in mammalian cells by PIKfyve-directed phosphorylation of PtdIns(3)P. Here we identify human Vac14 (hVac14), an evolutionarily conserved protein, present in all eukaryotes but studied principally in yeast thus far, as a novel positive regulator of PIKfyve enzymatic activity. In mammalian cells and tissues, Vac14 is a low-abundance 82-kDa protein, but its endogenous levels could be up-regulated upon ectopic expression of hVac14. PIKfyve and hVac14 largely cofractionated, populated similar intracellular locales, and physically associated. A small-interfering RNA-directed gene-silencing approach to selectively eliminate endogenous hVac14 rendered HEK293 cells susceptible to morphological alterations similar to those observed upon expression of PIKfyve mutants deficient in PtdIns(3,5)P(2) production. Largely decreased in vitro PIKfyve kinase activity and unaltered PIKfyve protein levels were detected under these conditions. Conversely, ectopic expression of hVac14 increased the intrinsic PIKfyve lipid kinase activity. Concordantly, intracellular PtdIns(3)P-to-PtdIns(3,5)P(2) conversion was perturbed by hVac14 depletion and was elevated upon ectopic expression of hVac14. These data demonstrate a major role of the PIKfyve-associated hVac14 protein in activating PIKfyve and thereby regulating PtdIns(3,5)P(2) synthesis and endomembrane homeostasis in mammalian cells.  相似文献   

4.
PIKfyve enzymatic activity is required in maintaining late endocytic membrane integrity. PIKfyve is a dual specificity enzyme that phosphorylates phosphatidylinositol (PtdIns) and PtdIns 3-P at the 5-hydroxyl and unidentified endogenous protein substrate(s). To determine which of these activities (lipid versus protein kinase activity) is responsible for endomembrane homeostasis we analyzed a double mutant PIKfyve(K1999E/K2000E). These substitutions in the putative lipid-substrate activation loop nearly completely abrogated the lipid kinase activity without any significant effect on the protein kinase activity of PIKfyve(K1999E/K2000E). Expression of PIKfyve(K1999E/K2000E) in COS cells induced a dramatic dominant-negative effect in the form of endomembrane swelling and vacuolation. In addition, the lipid-substrate specificity of PIKfyve was modified by introducing single mutations in Lys-1999 or Lys-2000. This yielded proteins with preferentially abrogated synthesis of PtdIns 5-P (PIKfyve(K2000E)) or PtdIns 3,5-P(2) (PIKfyve(K1999E)), of which only the PIKfyve(K1999E) mutant induced the characteristic endomembrane defects upon cell transfection. Furthermore, phosphoinositide microinjection into cells demonstrated a selective ability of PtdIns 3,5-P(2) to correct the endomembrane defects induced by the dominant-negative PIKfyve lipid kinase-deficient mutants. Thus, PtdIns 3,5-P(2) production by PIKfyve is crucial for endomembrane integrity, and Lys-1999 most likely directs the PIKfyve interactions with the 3-phosphate group in PtdIns 3-P.  相似文献   

5.
Gene mutations in the phosphoinositide-metabolizing enzymes are linked to various human diseases. In mammals, PIKfyve synthesizes PtdIns(3,5)P(2) and PtdIns5P lipids that regulate endosomal trafficking and responses to extracellular stimuli. The consequence of pikfyve gene ablation in mammals is unknown. To clarify the importance of PIKfyve and PIKfyve lipid products, in this study, we have characterized the first mouse model with global deletion of the pikfyve gene using the Cre-loxP approach. We report that nearly all PIKfyve(KO/KO) mutant embryos died before the 32-64-cell stage. Cultured fibroblasts derived from PIKfyve(flox/flox) embryos and rendered pikfyve-null by Cre recombinase expression displayed severely reduced DNA synthesis, consistent with impaired cell division causing early embryo lethality. The heterozygous PIKfyve(WT/KO) mice were born at the expected Mendelian ratio and developed into adulthood. PIKfyve(WT/KO) mice were ostensibly normal by several other in vivo, ex vivo, and in vitro criteria despite the fact that their levels of the PIKfyve protein and in vitro enzymatic activity in cells and tissues were 50-55% lower than those of wild-type mice. Consistently, steady-state levels of the PIKfyve products PtdIns(3,5)P(2) and PtdIns5P selectively decreased, but this reduction (35-40%) was 10-15% less than that expected based on PIKfyve protein reduction. The nonlinear decrease of the PIKfyve protein versus PIKfyve lipid products, the potential mechanism(s) discussed herein, may explain how one functional allele in PIKfyve(WT/KO) mice is able to support the demands for PtdIns(3,5)P(2)/PtdIns5P synthesis during life. Our data also shed light on the known human disorder linked to PIKFYVE mutations.  相似文献   

6.
PIKfyve is an essential mammalian lipid kinase with pleiotropic cellular functions whose genetic knockout in mice leads to preimplantation lethality. Despite several reports for PIKfyve-catalyzed synthesis of phosphatidylinositol 5-phosphate (PtdIns5P) along with phosphatidylinositol-3,5-biphosphate [PtdIns(3,5)P(2)] in vitro and in vivo, the role of the PIKfyve pathway in intracellular PtdIns5P production remains underappreciated and the function of the PIKfyve-synthesized PtdIns5P pool poorly characterized. Hence, the recently discovered potent PIKfyve-selective inhibitor, the YM201636 compound, has been solely tested for inhibiting PtdIns(3,5)P(2) synthesis. Here, we have compared the in vitro and in vivo inhibitory potency of YM201636 toward PtdIns5P and PtdIns(3,5)P(2). Unexpectedly, we observed that at low doses (10-25 nM), YM201636 inhibited preferentially PtdIns5P rather than PtdIns(3,5)P(2) production in vitro, whereas at higher doses, the two products were similarly inhibited. In cellular contexts, YM201636 at 160 nM inhibited PtdIns5P synthesis twice more effectively compared with PtdIns(3,5)P(2) synthesis. In 3T3L1 adipocytes, human embryonic kidney 293 and Chinese hamster ovary (CHO-T) cells, levels of PtdIns5P dropped by 62-71% of the corresponding untreated controls, whereas those of PtdIns(3,5)P(2) fell by only 28-46%. The preferential inhibition of PtdIns5P versus PtdIns(3,5)P(2) at low doses of YM201636 was explored to probe contributions of the PIKfyve-catalyzed PtdIns5P pool to insulin-induced actin stress fiber disassembly in CHO-T cells, GLUT4 translocation in 3T3L1 adipocytes, and induction of aberrant cellular vacuolation in these or other cell types. The results provide the first experimental evidence that the principal pathway for PtdIns5P intracellular production is through PIKfyve and that insulin effect on actin stress fiber disassembly is mediated entirely by the PIKfyve-produced PtdIns5P pool.  相似文献   

7.
PIKfyve, a kinase that displays specificity for phosphatidylinositol (PtdIns), PtdIns 3-phosphate (3-P), and proteins, is important in multivesicular body/late endocytic function. Enzymatically inactive PIKfyve mutants elicit enormous dilation of late endocytic structures, suggesting a role for PIKfyve in endosome-to-trans-Golgi network (TGN) membrane retrieval. Here we report that p40, a Rab9 effector reported previously to bind Rab9-GTP and stimulate endosome-to-TGN transport, interacts with PIKfyve as determined by yeast two-hybrid assays, glutathione S-transferase (GST) pull-down assays, and co-immunoprecipitation in doubly transfected HEK293 cells. The interaction engages the PIKfyve chaperonin domain and four out of the six C-terminally positioned kelch repeats in p40. Differential centrifugation in a HEK293 cell line, stably expressing PIKfyveWT, showed the membrane-associated immunoreactive p40 co-sedimenting with PIKfyve in the high speed pellet (HSP) fraction. Remarkably, similar analysis in a HEK293 cell line stably expressing dominant-negative kinase-deficient PIKfyveK1831E demonstrated a marked depletion of p40 from the HSP fraction. GST-p40 failed to specifically associate with the PIKfyve lipid products PtdIns 5-P and PtdIns 3,5-P2 in a liposome binding assay but was found to be an in vitro substrate of the PIKfyve serine kinase activity. A band with the p40 electrophoretic mobility was found to react with a phosphoserine-specific antibody mainly in the PIKfyveWT-containing fractions obtained by density gradient sedimentation of total membranes from PIKfyveWT-expressing HEK293 cells. Together these results identify the Rab9 effector p40 as a PIKfyve partner and suggest that p40-PIKfyve interaction and the subsequent PIKfyve-catalyzed p40 phosphorylation anchor p40 to discrete membranes facilitating late endosome-to-TGN transport.  相似文献   

8.
Accumulated evidence indicates that PtdIns5P, one of the seven phosphoinositides, found now to be constitutively present in yeast, plants and metazoa, serves as a signaling molecule to modulate pleiotropic cellular functions in both the nucleus and the cytoplasm. The enzymatic routes in biogenesis of basal PtdIns5P have remained incompletely understood. The role for candidate kinase PIKfyve that is principally involved in PtdIns(3,5)P2 production, has been questioned. In this review article we scrutinize the past obstacles that prevented the definitive implication of PIKfyve in PtdIns5P biosynthesis from PtdIns and focus on the recent pharmacological and genetic advancements that now make this conclusion well supported. We further summarize our current knowledge of the diverse stimuli modulating PtdIns5P levels, binding partners and regulated cellular process, with particular reference to the available mechanistic insights for the relevant signaling pathways.  相似文献   

9.
Lysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P2 from PtdIns(3)P, controls lysosome “fusion-fission” cycle dynamics, autophagosome turnover, and endocytic cargo delivery. Furthermore, INPP4B, a PtdIns 4-phosphatase that hydrolyzes PtdIns(3,4)P2 to form PtdIns(3)P, is emerging as a cancer-associated protein with roles in lysosomal biogenesis and other lysosomal functions. Here, we investigated the consequences of disrupting PIKfyve function in Inpp4b-deficient mouse embryonic fibroblasts. Through confocal fluorescence imaging, we observed the formation of massively enlarged lysosomes, accompanied by exacerbated reduction of endocytic trafficking, disrupted lysosome fusion-fission dynamics, and inhibition of autophagy. Finally, HPLC scintillation quantification of 3H-myo-inositol labeled PtdIns and PtdIns immunofluorescence staining, we observed that lysosomal PtdIns(3)P levels were significantly elevated in Inpp4b-deficient cells due to the hyperactivation of phosphatidylinositol 3-kinase catalytic subunit VPS34 enzymatic activity. In conclusion, our study identifies a novel signaling axis that maintains normal lysosomal homeostasis and dynamics, which includes the catalytic functions of Inpp4b, PIKfyve, and VPS34.  相似文献   

10.
PtdIns(3)P (phosphatidylinositol 3-phosphate) is a signaling molecule important for phagosome maturation. The major role of Vps34 in production of phagosomal PtdIns(3)P has been indicated. However, the fate of the newly generated PtdIns(3)P has not been well described. Here we show that elimination of PtdIns(3)P from phagosomal membrane was significantly delayed in RAW264.7 macrophages lacking PTEN or PIKfyve. In the PTEN-deficient cells treated with a PIKfyve inhibitor, degradation of PtdIns(3)P was almost lost, indicating that PTEN and PIKfyve are two major players in phagosomal PtdIns(3)P metabolism.  相似文献   

11.
The dual specificity mammalian enzyme PIKfyve phosphorylates in vitro position d-5 in phosphatidylinositol (PtdIns) and PtdIns 3-P, itself or exogenous protein substrates. Here we have addressed the crucial questions for the identity of the lipid products and the role of PIKfyve enzymatic activity in mammalian cells. CHO, HEK293, and COS cells expressing PIKfyve(WT) at high levels and >90% efficiencies increased selectively the intracellular PtdIns 3,5-P(2) production by 30--55%. In these cell types PtdIns 5-P was undetectable. A kinase-deficient point mutant, PIKfyve(K1831E), transiently transfected into these or other cells elicited a dramatic dominant phenotype. Subsequent to a dilation of the PIKfyve-containing vesicles, PIKfyve(K1831E)-expressing cells progressively accumulated multiple swollen lucent vacuoles of endosomal origin, first in the perinuclear cytoplasm and then toward the cell periphery. Despite their drastically altered morphology, the PIKfyve(K1831E)-expressing cells were viable and functionally active, evidenced by several criteria. This phenotype was completely reversed by introducing PIKfyve(WT) into the PIKfyve(K1831E)-transfected cells. Disruptions of the localization signal in the PIKfyve kinase-deficient mutant yielded a PIKfyve(K1831E Delta fyve) protein, incompetent to vacuolate cells, implying that an active PIKfyve enzyme at distinct late endocytic membranes is crucial for normal cell morphology. This was further substantiated by examining the vacuolation-induced potency of several pharmacological stimuli in cells expressing high PIKfyve(WT) levels. Together, the results indicate that PIKfyve enzymatic activity, possibly through the generation of PtdIns 3,5-P(2), and/or yet to be identified endogenous phosphoproteins, is critical for cell morphology and endomembrane homeostasis.  相似文献   

12.
PtdIns(3,5)P(2) (with PtdIns indicating phosphatidylinositol) is vital in the differentiation and development of multicellular organisms because knockout of the PtdIns(3,5)P(2)-synthesizing enzyme PIKfyve (phosphoinositide kinase for position 5 containing a FYVE finger domain) or its associated regulator ArPIKfyve is lethal. In previous work with endogenous proteins, we identified that Sac3, a phosphatase that turns over PtdIns(3,5)P(2), associates with the PIKfyve-ArPIKfyve biosynthetic complex. However, whether the three proteins suffice for the organization/maintenance of this complex [referred to as the PAS (PIKfyve-ArPIKfyve-Sac3) complex], how they interact with one another, and what the functional relevance of this ternary association would be remained unresolved. Using co-immunoprecipitation analyses in transfected mammalian cells with increased or decreased levels of the three proteins, singly or in double versus triple combinations, herein we report that the triad is sufficient to form and maintain the PAS complex. ArPIKfyve is the principal organizer interacting with both Sac3 and PIKfyve, whereas Sac3 is permissive for maximal PIKfyve-ArPIKfyve association in the PAS complex. We further identified that ArPIKfyve scaffolds the PAS complex through homomeric interactions, mediated via its conserved C-terminal domain. Introduction of the C-terminal peptide fragment of the ArPIKfyve-ArPIKfyve contact sites effectively disassembled the PAS complex and reduced the in vitro PIKfyve lipid kinase activity. Exploring insulin-regulated GLUT4 translocation in 3T3L1 adipocytes as a functional readout, a process that is positively regulated by PIKfyve activity and ArPIKfyve levels, we determined that ectopic expression of the ArPIKfyve C-terminal peptide inhibits GLUT4 surface accumulation. Our data indicate that the PAS complex is organized to provide optimal PIKfyve functionality and is maintained via ArPIKfyve homomeric and heteromeric interactions.  相似文献   

13.
Sbrissa D  Ikonomov OC  Shisheva A 《Biochemistry》2000,39(51):15980-15989
A subset of phosphoinositide 3-kinase family members are dual specificity enzymes; their protein kinase activity is thought to bring about an additional level to their intracellular regulation. Here we have examined whether the 5'-phosphoinositide kinase PIKfyve, reported previously to catalyze the formation of PtdIns 5-P and PtdIns 3,5-P(2) in vitro [Sbrissa et al. (1999) J. Biol. Chem. 274, 21589-21597], displays dual specificity. We now report that PIKfyve possesses an intrinsic protein kinase activity inseparable from its lipid kinase activity and, besides itself, can phosphorylate exogenous proteins in a substrate-specific manner. Both the autophosphorylation and transphosphorylation were demonstrated with PIKfyve immunopurified or affinity-purified from heterologously transfected COS cells, infected Sf9 cells, or native 3T3-L1 adipocytes. Conversely, no protein kinase activity was associated with immunopurified lipid kinase dead point (K1831E) or truncated (Delta1812-2052) PIKfyve mutants. PIKfyve autophosphorylation or transphosphorylation engaged Ser but not Thr or Tyr residues. PIKfyve autophosphorylation was largely abrogated upon pretreatment with PIKfyve lipid substrates or phosphatases. The impact of autophosphorylation on the PIKfyve lipid kinase activity was further examined with purified PIKfyve preparations. A decrease of 70% in the lipid product formation was associated with PIKfyve autophosphorylation, which was reversed upon treatment with phosphatases. In the cellular context, PIKfyve, or a fraction of it, was found in a phosphorylated form. Collectively, these results indicate that PIKfyve is a dual specificity kinase, which can generate and relay protein phosphorylation signals to regulate the formation of its lipid products, and possibly other events, in the context of living cells.  相似文献   

14.
Perturbations in phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2)-synthesizing enzymes result in enlarged endocytic organelles from yeast to humans, indicating evolutionarily conserved function of PtdIns(3,5)P2 in endosome-related events. This is reinforced by the structural and functional homology of yeast Vac14 and human Vac14 (ArPIKfyve), which activate yeast and mammalian PtdIns(3,5)P2-producing enzymes, Fab1 and PIKfyve, respectively. In yeast, PtdIns(3,5)P2-specific phosphatase, Fig4, in association with Vac14, turns over PtdIns(3,5)P2, but whether such a mechanism operates in mammalian cells and what the identity of mammalian Fig4 may be are unknown. Here we have identified and characterized Sac3, a Sac domain phosphatase, as the Fig4 mammalian counterpart. Endogenous Sac3, a widespread 97-kDa protein, formed a stable ternary complex with ArPIKfyve and PIKfyve. Concordantly, Sac3 cofractionated and colocalized with ArPIKfyve and PIKfyve. The intrinsic Sac3(WT) phosphatase activity preferably hydrolyzed PtdIns(3,5)P2 in vitro, although the other D5-phosphorylated polyphosphoinositides were also substrates. Ablation of endogenous Sac3 by short interfering RNAs elevated PtdIns(3,5)P2 in (32)P-labeled HEK293 cells. Ectopically expressed Sac3(WT) in COS cells colocalized with and dilated EEA1-positive endosomes, consistent with the PtdIns(3,5)P2 requirement in early endosome dynamics. In vitro reconstitution of carrier vesicle formation from donor early endosomes revealed a gain of function upon Sac3 loss, whereas PIKfyve or ArPIKfyve protein depletion produced a loss of function. These data demonstrate a coupling between the machinery for PtdIns(3,5)P2 synthesis and turnover achieved through a physical assembly of PIKfyve, ArPIKfyve, and Sac3. We suggest that the tight regulation in PtdIns(3,5)P2 homeostasis is mechanistically linked to early endosome dynamics in the course of cargo transport.  相似文献   

15.
The cellular functions, regulation and enzymology of phosphatidylinositol (PtdIns) 5-P, the newest addition to the family of phosphoinositides (PI), are still elusive. Whereas a kinase that uses PtdIns-5-P as an intracellular substrate has been assigned, a kinase that produces it remained to be identified. Here we report that PIKfyve, the enzyme found to synthesize PtdIns-5-P in vitro and PtdIns-3,5-P(2) in vitro and in vivo, is responsible for PtdIns-5-P production in a cellular context. Evidence is based on examination of two groups of cell types by two independent approaches. First, [(32)P]orthophosphate-labeled cells (Sf9, 3T3-L1 fibroblasts, and 3T3-L1 adipocytes) that show a high pressure liquid chromatography (HPLC)-detectable peak of the PtdIns-5-P head group at basal conditions demonstrated a 20-50% increase in radioactive PtdIns-5-P amounts upon expression of PIKfyve(WT). Second, cell types (HEK293), in which the basal levels of radioactive PtdIns-5-P were undetectable by HPLC head group analysis, demonstrated higher in vitro type II PIP kinase-directed conversion of the endogenous PtdIns-5-P pool into PtdIns-4,5-P(2), when induced to express PIKfyve(WT). Conversely, a decrease by 60% in the conversion of PtdIns-5-P to PtdIns-4,5-P(2) was associated with induced expression of the dominant-negative kinase-deficient PIKfyve(K1831E) mutant in HEK293 cells. When 3T3-L1 fibroblasts and 3T3-L1 adipocytes were subjected to osmotic shock, levels of PtdIns-5-P measured by both approaches were found to decrease profoundly upon a hypo-osmotic stimulus. Together, these results identify PIKfyve as an enzyme responsible for PtdIns-5-P biosynthesis and indicate a role for PtdIns-5-P in osmotic response pathways in mammalian cells.  相似文献   

16.
The phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of PtdIns(3,5) P 2, that has been implicated in various trafficking events associated with the endocytic pathway. We have now directly compared the effects of siRNA-mediated knockdown of PIKfyve in HeLa cells with a specific pharmacological inhibitor of enzyme activity. Both approaches induce changes in the distribution of CI-M6PR and trans-Golgi network (TGN)-46 proteins, which cycles between endosomes and TGN, leading to their accumulation in dispersed punctae, whilst the TGN marker golgin-245 retains a perinuclear disposition. Trafficking of CD8-CI-M6PR (retromer-dependent) and CD8-Furin (retromer-independent) chimeras from the cell surface to the TGN is delayed following drug administration, as is the transport of the Shiga toxin B-subunit. siRNA knockdown of PIKfyve produced no defect in epidermal growth factor receptor (EGFR) degradation, unless combined with knockdown of its activator molecule Vac14, suggesting that a low threshold of PtdIns(3,5) P 2 is necessary and sufficient for this pathway. Accordingly pharmacological inhibition of PIKfyve results in a profound block to the lysosomal degradation of activated epidermal growth factor (EGF) and Met receptors. Immunofluorescence revealed EGF receptors to be trapped in the interior of a swollen endosomal compartment. In cells starved of amino acids, PIKfyve inhibition leads to the accumulation of the lipidated form of GFP-LC3, a marker of autophagosomal structures, which can be visualized as fluorescent punctae. We suggest that PIKfyve inhibition may render the late endosome/lysosome compartment refractory to fusion with both autophagosomes and with EGFR-containing multivesicular bodies.  相似文献   

17.
The trafficking of endocytosed receptors through phosphatidylinositol 3-phosphate [PtdIns(3)P]-containing endosomes is thought to attenuate their signaling. Here, we show that the PtdIns(3)P 5-kinase Fab1/PIKfyve controls trafficking but not silencing of endocytosed receptors. Drosophila fab1 mutants contain undetectable phosphatidylinositol 3,5-bisphosphate levels, show profound increases in cell and organ size, and die at the pupal stage. Mutant larvae contain highly enlarged multivesicular bodies and late endosomes that are inefficiently acidified. Clones of fab1 mutant cells accumulate Wingless and Notch, similarly to cells lacking Hrs, Vps25, and Tsg101, components of the endosomal sorting machinery for ubiquitinated membrane proteins. However, whereas hrs, vps25, and tsg101 mutant cell clones accumulate ubiquitinated cargo, this is not the case with fab1 mutants. Even though endocytic receptor trafficking is impaired in fab1 mutants, Notch, Wingless, and Dpp signaling is unaffected. We conclude that Fab1, despite its importance for endosomal functions, is not required for receptor silencing. This is consistent with the possibility that Fab1 functions at a late stage in endocytic receptor trafficking, at a point when signal termination has occurred.  相似文献   

18.
Phosphoinositides play an important role in organelle identity by recruiting effector proteins to the host membrane organelle, thus decorating that organelle with molecular identity. Phosphatidylinositol-3,5-bisphos- phate [PtdIns(3,5)P(2) ] is a low-abundance phosphoinositide that predominates in endolysosomes in higher eukaryotes and in the yeast vacuole. Compared to other phosphoinositides such as PtdIns(4,5)P(2) , our understanding of the regulation and function of PtdIns(3,5)P(2) remained rudimentary until more recently. Here, we review many of the recent developments in PtdIns(3,5)P(2) function and regulation. PtdIns(3,5)P(2) is now known to espouse functions, not only in the regulation of endolysosome morphology, trafficking and acidification, but also in autophagy, signaling mediation in response to stresses and hormonal cues and control of membrane and ion transport. In fact, PtdIns(3,5)P(2) misregulation is now linked with several human neuropathologies including Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Given the functional versatility of PtdIns(3,5)P(2) , it is not surprising that regulation of PtdIns(3,5)P(2) metabolism is proving rather elaborate. PtdIns(3,5)P(2) synthesis and turnover are tightly coupled via a protein complex that includes the Fab1/PIKfyve lipid kinase and its antagonistic Fig4/Sac3 lipid phosphatase. Most interestingly, many PtdIns(3,5)P(2) regulators play simultaneous roles in its synthesis and turnover.  相似文献   

19.
One or more free hydroxyls of the phosphatidylinositol (PtdIns) head group undergo enzymatic phosphorylation, yielding phosphoinositides (PIs) with key functions in eukaryotic cellular regulation. Two such species, PtdIns 5-P and PtdIns 3,5-P(2), have now been identified in mammalian cells, but their biosynthesis remains unclear. We have isolated a novel mammalian PI kinase, p235, whose exact substrate specificity remained to be determined (Shisheva, A., Sbrissa, D., and Ikonomov, O. (1999) Mol. Cell. Biol. 19, 623-634). Here we report that recombinant p235 expressed in COS cells, like the authentic p235 in adipocytes, displays striking specificity for PtdIns over PI substrates and generates two products identified as PtdIns 5-P and PtdIns 3,5-P(2) by HPLC analyses. Synthetic PtdIns 3-P substrates were also converted to PtdIns 3,5-P(2) but to a substantially lesser extent than PtdIns isolated from natural sources. Important properties of the p235 PI 5-kinase include high sensitivity to nonionic detergents and relative resistance to wortmannin and adenosine. By analyzing deletion mutants in a heterologous cell system, we determined that in addition to the predicted catalytic domain other regions of the molecule are critical for the p235 enzymatic activity. HPLC resolution of monophosphoinositide products, generated by p235 immune complexes derived from lysates of 3T3-L1 adipocytes acutely stimulated with insulin, revealed essentially the same PtdIns 5-P levels as the corresponding p235 immune complexes of resting cells. However, the acute insulin action resulted in an increase of a wortmannin-sensitive PtdIns 3-P peak, suggestive of a plausible recruitment of wortmannin-sensitive PI 3-kinase(s) to p235. In conclusion, mouse p235 (renamed here PIKfyve) displays a strong in vitro activity for PtdIns 5-P and PtdIns 3,5-P(2) generation, implying PIKfyve has a key role in their biosynthesis.  相似文献   

20.
The mammalian phosphatidylinositol (PtdIns) 5-P/PtdIns 3,5-P2-producing kinase PIKfyve has been implicated in maintaining endomembrane homeostasis in mammalian cells. To address the role of PIKfyve in trafficking processes, we examined the functioning of the biosynthetic, endocytic, and recycling pathways in stable human embryonic kidney 293 cell lines inducibly expressing the wild-type or kinase-defective dominant-negative form. PIKfyveWT or PIKfyveK1831E expression did not affect the processing and lysosomal targeting of newly synthesized procathepsin D. Likewise the rates of transferrin uptake/recycling or epidermal growth factor receptor degradation were not altered upon expression of either protein. In contrast, PIKfyveK1831E but not PIKfyveWT expression markedly impaired the late uptake of fluid phase marker horseradish peroxidase. Inspection of the organelle morphology by confocal microscopy with specific markers in COS cells transiently expressing PIKfyveK1831E showed the Golgi apparatus, end lysosomes, and the recycling compartment indistinguishable from nontransfected cells, despite the dramatic PIKfyveK1831E-induced endomembrane vacuolation. In contrast, we observed a striking effect on the late endocytic compartment, marked by disruption of the dextran-labeled perinuclear endosomal compartment and formation of dispersed enlarged vesicles. Electron microscopy identified the cytoplasmic vacuoles in the PIKfyveK1831E-expressing human embryonic kidney 293 cells as enlarged multivesicular body-like structures with substantially lower number of internal vesicles and membrane whorls. Together, these data indicate that PIKfyve selectively regulates the sorting and traffic of peripheral endosomes containing lysosomaly directed fluid phase cargo through controlling the morphogenesis and function of multivesicular bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号