首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In higher animal cells, the principal limitation of gene-targeting technology is the extremely low efficiency of targeted integration, which occurs three to four orders of magnitude less frequently than random integration. Assuming that random integration mechanistically involves non-homologous end-joining (NHEJ), inactivation of this pathway should reduce random integration and may enhance gene targeting. To test this possibility, we examined the frequencies of random and targeted integration in NHEJ-deficient chicken DT40 and human Nalm-6 cell lines. As expected, loss of NHEJ resulted in drastically reduced random integration in DT40 cells. Unexpectedly, however, this was not the case for Nalm-6 cells, indicating that NHEJ is not the sole mechanism of random integration. Nevertheless, we present evidence that NHEJ inactivation can lead to enhanced gene targeting through a reduction of random integration and/or an increase in targeted integration by homologous recombination. Most intriguingly, our results show that, in the absence of functional NHEJ, random integration of targeting vectors occurs more frequently than non-targeting vectors (harboring no or little homology to the host genome), implying that suppression of NHEJ-independent random integration events is needed to greatly enhance gene targeting in animal cells.  相似文献   

2.
Morphological analysis of mitotic chromosomes is used to detect mutagenic chemical compounds and to estimate the dose of ionizing radiation to be administered. It has long been believed that chromosomal breaks are always associated with double-strand breaks (DSBs). We here provide compelling evidence against this canonical theory. We employed a genetic approach using two cell lines, chicken DT40 and human Nalm-6. We measured the number of chromosomal breaks induced by three replication-blocking agents (aphidicolin, 5-fluorouracil, and hydroxyurea) in DSB-repair-proficient wild-type cells and cells deficient in both homologous recombination and nonhomologous end-joining (the two major DSB-repair pathways). Exposure of cells to the three replication-blocking agents for at least two cell cycles resulted in comparable numbers of chromosomal breaks for RAD54−/−/KU70−/− DT40 clones and wild-type cells. Likewise, the numbers of chromosomal breaks induced in RAD54−/−/LIG4−/− Nalm-6 clones and wild-type cells were also comparable. These data indicate that the replication-blocking agents can cause chromosomal breaks unassociated with DSBs. In contrast with DSB-repair-deficient cells, chicken DT40 cells deficient in PIF1 or ATRIP, which molecules contribute to the completion of DNA replication, displayed higher numbers of mitotic chromosomal breaks induced by aphidicolin than did wild-type cells, suggesting that single-strand gaps left unreplicated may result in mitotic chromosomal breaks.  相似文献   

3.
Wang H  Wang X  Iliakis G  Wang Y 《Radiation research》2003,159(3):420-425
Caffeine inhibits ATM and ATR, two important checkpoint regulators, abolishes ionizing radiation-induced checkpoint response, and radiosensitizes cells. Radiation-induced DNA double-strand breaks (DSBs) are repaired by two major processes, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). It remains unclear which repair process, HRR or NHEJ, is affected when the checkpoint responses are abolished by caffeine. In this study we observed the effect of caffeine on gene-targeted DT40 chicken lymphoblast cells. We show that caffeine efficiently abolishes S- and G(2)-phase checkpoint responses after irradiation in all cell lines tested and greatly radiosensitizes wild-type and ATM(-/-) cells, the partially checkpoint-deficient cells. However, caffeine has a much smaller radiosensitizing effect on RAD54(-/-) cells and has no effect on RAD51-deficient cells. RAD51 and RAD54 are the important factors for HRR. Our results indicate that the checkpoint responses abolished by caffeine (S and G(2)) mainly affect HRR, which results in cell radiosensitization.  相似文献   

4.
53BP1 (p53 binding protein) is a BRCT domain-containing protein that is rapidly recruited to DNA double strand breaks (DSBs). To investigate the role of 53BP1 in the DNA damage response, we generated 53BP1(-/-) cells from the chicken DT40 cell line. As in mammalian cells, mutation of 53BP1 increased cellular sensitivity to ionizing radiation. Although depletion of 53BP1 resulted in checkpoint defects in mammalian cells, DT40 53BP1(-/-) cells had normal intra S phase and G2/M checkpoints. G1 specific radiosensitivity and a higher sensitivity to topoisomerase II suggested defective non-homologous end joining (NHEJ) defects in DT40 53BP1(-/-) cells. Genetic analyses confirm this suggestion as we have demonstrated an epistatic relationship between 53BP1 and the NHEJ genes, Ku70 and Artemis, but not with Rad54, a gene essential for repair of DSBs by homologous recombination. We conclude that the major role of 53BP1 in supporting survival of DT40 cells that have suffered DNA DSBs is in facilitating repair by NHEJ.  相似文献   

5.
Long interspersed elements (LINEs) are transposable elements that proliferate within eukaryotic genomes, having a large impact on eukaryotic genome evolution. LINEs mobilize via a process called retrotransposition. Although the role of the LINE-encoded protein(s) in retrotransposition has been extensively investigated, the participation of host-encoded factors in retrotransposition remains unclear. To address this issue, we examined retrotransposition frequencies of two structurally different LINEs—zebrafish ZfL2-2 and human L1—in knockout chicken DT40 cell lines deficient in genes involved in the non-homologous end-joining (NHEJ) repair of DNA and in human HeLa cells treated with a drug that inhibits NHEJ. Deficiencies of NHEJ proteins decreased retrotransposition frequencies of both LINEs in these cells, suggesting that NHEJ is involved in LINE retrotransposition. More precise characterization of ZfL2-2 insertions in DT40 cells permitted us to consider the possibility of dual roles for NHEJ in LINE retrotransposition, namely to ensure efficient integration of LINEs and to restrict their full-length formation.  相似文献   

6.
Gene targeting provides a powerful means for analyzing gene function, as exemplified by knockout mouse studies and recent work with the highly recombinogenic chicken DT40 B-lymphocyte line. In human cultured cells, however, the low frequency of gene targeting is a serious barrier to efficiently generate knockout clones. Moreover, commonly used human cell lines are karyotypically abnormal or unstable. Here, we show using promoterless targeting constructs that Nalm-6, a human pre-B ALL cell line, is highly proficient for gene targeting by homologous recombination. Indeed, the efficiency of TP53 gene targeting in Nalm-6 appears nearly two orders of magnitude higher than that in HCT116, a colon cancer cell line popularly used for gene targeting. Expression analysis revealed a lack of MSH2 expression in this cell line. As Nalm-6 has a stable neardiploid karyotype with normal p53 status, our results underscore the usefulness of Nalm-6 for gene knockout studies in humans.  相似文献   

7.
DNA double-strand breaks (DSBs) are one of the most dangerous forms of DNA lesion that can result in genomic instability and cell death. Therefore cells have developed elaborate DSB-repair pathways to maintain the integrity of genomic DNA. There are two major pathways for the repair of DSBs in eukaryotes: homologous recombination and non-homologous end-joining (NHEJ). Until very recently, the NHEJ pathway had been thought to be restricted to the eukarya. However, an evolutionarily related NHEJ apparatus has now been identified and characterized in the prokarya. Here we review the recent discoveries concerning bacterial NHEJ and discuss the possible origins of this repair system. We also examine the insights gained from the recent cellular and biochemical studies of this DSB-repair process and discuss the possible cellular roles of an NHEJ pathway in the life-cycle of prokaryotes and phages.  相似文献   

8.

Background

We have previously used the ATAD5-luciferase high-throughput screening assay to identify genotoxic compounds with potential chemotherapeutic capabilities. The successful identification of known genotoxic agents, including the histone deacetylase inhibitor (HDACi) trichostatin A (TSA), confirmed the specificity of the screen since TSA has been widely studied for its ability to cause apoptosis in cancer cells. Because many cancers have acquired mutations in DNA damage checkpoints or repair pathways, we hypothesized that these cancers may be susceptible to treatments that target compensatory pathways. Here, we used a panel of isogenic chicken DT40 B lymphocyte mutant and human cell lines to investigate the ability of TSA to define selective pathways that promote HDACi toxicity.

Results

HDACi induced a DNA damage response and reduced viability in all repair deficient DT40 mutants although ATM-nulls were least affected. The most dramatic sensitivity was observed in mutants lacking the homology dependent repair (HDR) factor BLM or the non-homologous end-joining (NHEJ) and HDR factors, KU/RAD54, suggesting an involvement of either HDR or NHEJ in HDACi-induced cell death. To extend these findings, we measured the frequencies of HDR and NHEJ after HDACi treatment and monitored viability in human cell lines comparably deficient in HDR or NHEJ. Although no difference in HDR frequency was observed between HDACi treated and untreated cells, HDR-defective human cell lines were clearly more sensitive than wild type. Unexpectedly, cells treated with HDACis showed a significantly elevated NHEJ frequency.

Conclusions

HDACi targeting drugs induced significant increases in NHEJ activity in human cell lines but did not alter HDR frequency. Moreover, HDR is required for cellular resistance to HDACi therapy; therefore, NHEJ does not appear to be a critical axis for HDACi resistance. Rather, HDACi compounds induced DNA damage, most likely double strand breaks (DSBs), and HDR proficiency is correlated with cell survival.  相似文献   

9.
Thermal radiosensitization has been shown to cause inhibition of repair of sublethal and potentially lethal damage and DNA DSBs. In this study we assessed thermal radiosensitization in mutants deficient in homologous recombinational (HR) repair and nonhomologous end joining repair (NHEJ). Using cells of the mouse wild-type embryo fibroblast cell line MEF and its Ku80(-/-) derivative that is deficient in NHEJ, we showed that thermal radiosensitization is the same in both cell lines. Further studies with cells of the wild-type CHO-AA8 cell line and its derivative IRS(ISF), which is deficient in HR, also showed comparable thermal radiosensitization in both cell lines. Further experiments using cells of chicken DT40 cell lines also showed comparable thermal radiosensitization between the wild-type HR mutant Rad54, the NHEJ mutant Ku70, and the double mutant Rad 54-Ku70. These results indicate that the HR and NHEJ pathways may not be targets for thermal radiosensitization.  相似文献   

10.
Mutations in TP53 occur in more than 50% of the lung cancer patients and are associated with an increased resistance to chemotherapy and radiotherapy. The human lung adenocarcinoma cell lines A549 and LXSN contain a wild-type TP53 and were growth arrested at both the G(1)- and G(2)-phase checkpoints after irradiation. However, a TP53-disrupted cell line, E6, was arrested only at the G(2)-phase checkpoint. UCN-01 (7-hydroxystaurosporine), a CHEK1 inhibitor that abrogates the G(2) block, has been reported to enhance radiation toxicity in human lymphoma and colon cancer cell lines. In this study, UCN-01 preferentially enhanced the radiosensitivity of the TP53-disrupted E6 cells compared to the TP53 wild-type cells. This effect was more pronounced in cells synchronized in early G(1) phase, where the E6 cells showed a higher resistance to radiation in the absence of drug. These results indicate that the combination of UCN-01 and radiation can more specifically target resistant TP53 mutated cancer cells and spare TP53 wild-type normal cells.  相似文献   

11.
Artemis is a recently identified factor involved in V(D)J recombination and nonhomologous end joining (NHEJ) of DNA double-strand break (DSB) repair. Here, we performed targeted disruption of the Artemis gene (ARTEMIS) in the human pre-B cell line Nalm-6. Unexpectedly, we found that cells lacking Artemis exhibit increased sensitivity to low doses, but not high doses, of ionizing radiation. We also show that ARTEMIS-deficient cells are hypersensitive to the topoisomerase II inhibitor etoposide, but to a much lesser extent than cells lacking DNA ligase IV, a critical component of NHEJ. Unlike DNA ligase IV-deficient cells, ARTEMIS-deficient cells were not hypersensitive to ICRF-193, a topoisomerase II inhibitor that does not stabilize topoisomerase II-DNA cleavable complexes. Collectively, our results suggest that Artemis only partially participates in the NHEJ pathway to repair DSBs in human somatic cells.  相似文献   

12.
Reappraisal of G1-phase arrest and synchronization by lovastatin   总被引:3,自引:0,他引:3  
It has been proposed that lovastatin arrests cells in the G1-phase of the division cycle, and that release from lovastatin inhibition produces a synchronized culture. A new method of methocel time-lapse-videography has been used to analyse cell division patterns following lovastatin treatment. Release of L1210 cells from lovastatin inhibition failed to produce synchronized divisions. Moreover, contrary to earlier proposals, lovastatin did not arrest cells with a G1-phase amount of DNA. Analysis of previous reports of 'synchronization' and growth-arrest support these findings. It is concluded that lovastatin neither synchronizes cells, nor arrests cells in the G1-phase of the division cycle.  相似文献   

13.
It has been predicted that nocodazole-inhibited cells are not synchronized because nocodazole-arrested cells with a G2-phase amount of DNA would not have a narrow cell-size range reflecting the cell size of some specific, presumably G2-phase, cell-cycle age. Size measurements of nocodazole-inhibited cells now fully confirm this prediction. Further, release from nocodazole inhibition does not produce cells that move through the cell cycle mimicking the passage of normal unperturbed cells through the cell cycle. Nocodazole, an archetypal whole-culture synchronization method, can inhibit growth to produce cells with a G2-phase amount of DNA, but such cells are not synchronized. Cells produced by a selective (i.e., non-whole-culture) method not only have a specific DNA content, but also have a narrow size distribution. The current view of cell-cycle control that is based on methods that are not suitable for cell-cycle analysis must therefore be reconsidered when results are based on whole-culture synchronization.This work was supported by the National Science Foundation (grant MCB–0323346) and (in part) by the National Institutes of Health (University of Michigan’s Cancer Center, support grant 5 P30 CA46592). G.I., M.T., and P. B. are associated with the Undergraduate Research Opportunity Program of the University of Michigan, which also supported this research.  相似文献   

14.
Unrepaired DNA double-strand breaks (DSBs) produced by ionizing radiation (IR) are a major determinant of cell killing. To determine the contribution of DNA repair pathways to the well-established cell cycle variation in IR sensitivity, we compared the radiosensitivity of wild-type CHO cells to mutant lines defective in nonhomologous end joining (NHEJ), homologous recombination repair (HRR), and the Fanconi anemia pathway. Cells were irradiated with IR doses that killed approximately 90% of each asynchronous population, separated into synchronous fractions by centrifugal elutriation, and assayed for survival (colony formation). Wild-type cells had lowest resistance in early G1 and highest resistance in S phase, followed by declining resistance as cells move into G2/M. In contrast, HR-defective cells (xrcc3 mutation) were most resistant in early G1 and became progressively less resistant in S and G2/M, indicating that the S-phase resistance in wild-type cells requires HRR. Cells defective in NHEJ (dna-pk(cs) mutation) were exquisitely sensitive in early G1, most resistant in S phase, and then somewhat less resistant in G2/M. Fancg mutant cells had almost normal IR sensitivity and normal cell cycle dependence, suggesting that Fancg contributes modestly to survival and in a manner that is independent of cell cycle position.  相似文献   

15.
In vertebrate cells, DNA double-strand breaks are efficiently repaired by homologous recombination or nonhomologous end-joining (NHEJ). The latter pathway relies on Ku (the Ku70/Ku86 heterodimer), DNA-PKcs, Artemis, Xrcc4, and DNA ligase IV (Lig4). Here, we show that a human pre-B cell line nullizygous for Lig4 exhibits hypersensitivity to topoisomerase II (Top2) inhibitors, demonstrating a crucial role for the NHEJ pathway in repair of Top2-induced DNA damage in vertebrates. We also show that in the chicken DT40 cell line, all NHEJ mutants (i.e., Ku70-, Lig4-, and DNA-PKcs-null cells) are equally hypersensitive to the Top2 inhibitor ICRF-193, indicating that the drug-induced damage is repaired by NHEJ involving DNA-PKcs. Intriguingly, however, DNA-PKcs-null cells display considerably less severe phenotype than other NHEJ mutants in terms of hypersensitivity to VP-16, a Top2 poison that stabilizes cleavable complexes. The results indicate that two distinct NHEJ pathways, involving or not involving DNA-PKcs, are important for the repair of VP-16-induced DNA damage, providing additional evidence for the biological relevance of DNA-PKcs-independent NHEJ. Our results provide significant insights into the mechanisms of repair of Top2-mediated DNA damage, with implications for chemotherapy involving Top2 inhibitors.  相似文献   

16.
Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2α was largely responsible for the induction of γH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR), we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells.  相似文献   

17.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   

18.
The cell cycle-dependent distribution of the proliferation-associated Ki-67 antigen has been evaluated immunocytochemically in L-132 human fetal lung cells. The cells were synchronized and cell cycle phases were determined: G1 = 6.7 h, S = 5.4 h, G2 = 8.5 h and mitosis = 1.3 h. The Ki-67 patterns were strictly correlated with the cell cycle phases. In late G1-phase, Ki-67 antigen was present only in the perinucleolar region. In the S-phase, Ki-67 staining was found homogeneously in the karyoplasm and in the perinucleolar region. G2-phase cells contained a finely granular Ki-67 staining in the karyoplasm with Ki-67-positive specks and perinucleolar staining. In early mitotic cells (pro- and metaphase) an intense perichromosomal Ki-67 staining was observed in addition to a homogeneously stained karyoplasm in prophase, and cytoplasm in metaphase. During ana- and telophase the Ki-67 antigen disappeared rapidly. In resting cells there was no Ki-67 staining.  相似文献   

19.
The controlling role of ATM in homologous recombinational repair of DNA damage   总被引:32,自引:0,他引:32  
The human genetic disorder ataxia telangiectasia (A-T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double-strand breaks (dsbs) persist in A-T cells after irradiation, but the underlying defect is unclear. To investigate ATM's interactions with dsb repair pathways, we disrupted ATM along with other genes involved in the principal, complementary dsb repair pathways of homologous recombination (HR) or non-homologous end-joining (NHEJ) in chicken DT40 cells. ATM(-/-) cells show altered kinetics of radiation-induced Rad51 and Rad54 focus formation. Ku70-deficient (NHEJ(-)) ATM(-/-) chicken DT40 cells show radiosensitivity and high radiation-induced chromosomal aberration frequencies, while Rad54-defective (HR(-)) ATM(-/-) cells show only slightly elevated aberration levels after irradiation, placing ATM and HR on the same pathway. These results reveal that ATM defects impair HR-mediated dsb repair and may link cell cycle checkpoints to HR activation.  相似文献   

20.
Wang X  Wang H  Iliakis G  Wang Y 《Radiation research》2003,159(3):426-432
After exposure to ionizing radiation, proliferating cells actively slow down progression through the cell cycle through the activation of checkpoints to provide time for repair. Two major complementary DNA double-strand break (DSB) repair pathways exist in mammalian cells, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). The relationship between checkpoint activation and these two types of DNA DSB repair pathways is not clear. Caffeine, as a nonspecific inhibitor of ATM and ATR, abolishes multi-checkpoint responses and sensitizes cells to radiation-induced killing. However, it remains unknown which DNA repair process, NHEJ or HRR, or both, is affected by caffeine-abolished checkpoint responses. We report here that caffeine abolishes the radiation-induced G(2)-phase checkpoint and efficiently sensitizes both NHEJ-proficient and NHEJ-deficient mammalian cells to radiation-induced killing without affecting NHEJ. Our results indicate that caffeine-induced radiosensitization occurs by affecting an NHEJ-independent process, possibly HRR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号