首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
CME‐1, a novel water‐soluble polysaccharide purified from Ophiocordyceps sinensis mycelia, has anti‐oxidative, antithrombotic and antitumour properties. In this study, other major attributes of CME‐1, namely anti‐inflammatory and immunomodulatory properties, were investigated. Treating lipopolysaccharide (LPS)‐stimulated RAW 264.7 cells with CME‐1 concentration‐dependently suppressed nitric oxide formation and inducible nitric oxide synthase (iNOS) expression. In the CME‐1‐treated RAW 264.7 cells, LPS‐induced IκBα degradation and the phosphorylation of p65, Akt and mitogen‐activated protein kinases (MAPKs), including extracellular signal‐regulated kinase, c‐Jun N‐terminal kinase and p38, were reduced. Treatment with a protein phosphatase 2A (PP2A)‐specific inhibitor, significantly reversed the CME‐1‐suppressed iNOS expression; IκBα degradation; and p65, Akt and MAPK phosphorylation. PP2A activity up‐regulation and PP2A demethylation reduction were also observed in the cells. Moreover, CME‐1‐induced PP2A activation and its subsequent suppression of LPS‐activated RAW 264.7 cells were diminished by the inhibition of ceramide signals. LPS‐induced reactive oxygen species (ROS) and hydroxyl radical formation were eliminated by treating RAW 264.7 cells with CME‐1. Furthermore, the role of ceramide signalling pathway and anti‐oxidative property were also demonstrated in CME‐1‐mediated inhibition of LPS‐activated primary peritoneal macrophages. In conclusion, CME‐1 suppressed iNOS expression by up‐regulating ceramide‐induced PP2A activation and reducing ROS production in LPS‐stimulated macrophages. CME‐1 is a potential therapeutic agent for treating inflammatory diseases.  相似文献   

3.
Peroxiredoxin (PRX), a scavenger of H2O2 and alkyl hydroperoxides in living organisms, protects cells from oxidative stress. Contrary to its known anti‐oxidant roles, the involvement of PRX‐1 in the regulation of lipopolysaccharide (LPS) signaling is poorly understood, possible immunological functions of PRX‐1 having been uncovered only recently. In the present study, it was discovered that the PRX‐1 deficient macrophage like cell line (RAW264.7) has anti‐inflammatory activity when stimulated by LPS. Treatment with LPS for 3 hrs resulted in increased gene expression of an anti‐inflammatory cytokine, interleukin‐10 (IL‐10), in PRX‐1 knock down RAW264.7 cells. Gene expression of pro‐inflammatory cytokines IL‐1β and tumor necrosis factor‐ α (TNF‐α) did not show notable changes under the same conditions. However, production of these cytokines significantly decreased in PRX‐1 knock down RAW264.7 cells with 12 hrs of stimulation. Production of IL‐10 was also increased in PRX‐1 knock down RAW264.7 cells with 12 hrs of stimulation. We predicted that higher concentrations of IL‐10 would result in decreased expression of IL‐1β and TNF‐α in PRX‐1 knock‐down cells. This was confirmed by blocking IL‐10, which reestablished IL‐1β and TNF‐α secretion. We also observed that increased concentrations of IL‐10 do not affect the NF‐κB pathway. Interestingly, STAT3 phosphorylation by LPS stimulation was significantly increased in PRX‐1 knockdown RAW264.7 cells. Up‐regulation of IL‐10 in PRX‐1 knockdown cells and the resulting downregulation of proinflammatory cytokine production seem to involve the STAT3 pathway in macrophages. Thus, down‐regulation of PRX‐1 may contribute to the suppression of adverse effects caused by excessive activation of macrophages through affecting the STAT3 signaling pathway.  相似文献   

4.
The mechanism of interleukin (IL)-10-mediated inhibition of tumor necrosis factor (TNF)-alpha production was studied by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. IL-10 inhibited TNF-alpha production transiently at an early stage after LPS stimulation. IL-10 inhibited the activation of nuclear factor (NF)-kappaB, p38 and stress-activated protein kinase (SAPK) in LPS-stimulated RAW 264.7 cells. Although the level of MyD88 protein increased in response to LPS, IL-10 prevented the LPS-induced MyD88 augmentation. There was no significant difference in the MyD88 mRNA expression between the cells pretreated with or without IL-10 in response to LPS. Therefore, IL-10 was suggested to inhibit LPS-induced TNF-alpha production via reduced MyD88 expression.  相似文献   

5.
A system for assessing the anti-inflammatory effect of food factors was developed by establishing a co-culture system with intestinal epithelial Caco-2 cells (apical side) and macrophage RAW264.7 cells (basolateral side). In this system, the stimulation of RAW264.7 cells with lipopolysaccharide was followed by a decrease in transepithelial electrical resistance, which is a marker of the integrity of the Caco-2 monolayer and an increase in TNF-α production from RAW264.7 cells and IL-8 mRNA expression in Caco-2 cells. Treatment with anti-TNF-α antibodies or budesonide suppressed in increase in TNF-α production and IL-8 mRNA expression. These results indicated that this co-culture model could imitate the gut inflammation in vivo. In addition, fucoidan, sulphated polysaccharides from brown algae, was employed as a candidate of evolution and added to the apical side of this model. Fucoidan suppressed IL-8 gene expression through a reduction in TNF-α production from RAW264.7 cells stimulated with lipopolysaccharide.  相似文献   

6.
BACKGROUND: Tumor necrosis factor (TNF) production by macrophages plays an important role in the host response to infection. TNF-alpha gene expression in RAW 264.7 macrophages is predominantly regulated at the translational level. A key element in this regulation is an AU-rich (AUR) sequence located in the 3' untranslated region (UTR) of TNF mRNA. In unstimulated macrophages, the translation of TNF mRNA is inhibited via this AUR sequence. Upon stimulation with LPS, this repression is overcome and translation occurs. In this study, we attempted to identify cellular proteins that interact with the AUR sequence and thereby regulate TNF mRNA translation. MATERIALS AND METHODS: RNA probes corresponding to portions of TNF mRNA 3' UTR were synthesized. These labeled RNAs were incubated with cytoplasmic extracts of either unstimulated or lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. The RNA/protein complexes formed were analyzed by gel retardation. Ultraviolet (UV) cross-linking experiments were performed to determine the molecular weight of the proteins involved in the complexes. RESULTS: TNF mRNA AUR sequence formed two complexes (1 and 2) of distinct electrophoretic mobilities. While the formation of complex 1 was independent of the activation state of the macrophages from which the extracts were obtained, complex 2 was detected only using cytoplasmic extracts from LPS-stimulated macrophages. Upon UV cross-linking, two proteins, of 50 and 80 kD, respectively, were capable of binding the UAR sequence. The 50-kD protein is likely to be part of the LPS-inducible complex 2, since its binding ability was enhanced upon LPS stimulation. Interestingly, complex 2 formation was also triggered by Sendaï virus infection, another potent activator of TNF mRNA translation in RAW 264.7 macrophages. In contrast, complex 2 was not detected with cytoplasmic extracts obtained from B and T cell lines which are unable to produce TNF in response to LPS. Protein tyrosine phosphorylation is required for LPS-induced TNF mRNA translation. Remarkably, the protein tyrosine phosphorylation inhibitor herbimycin A abolished LPS-induced complex 2 formation. Complex 2 was already detectable after 0.5 hr of LPS treatment and was triggered by a minimal LPS dose of 10 pg/ml. CONCLUSIONS: The tight correlation between TNF production and the formation of an LPS-inducible cytoplasmic complex suggests that this complex plays a role in the translational regulation of TNF mRNA.  相似文献   

7.
8.
9.
The aim of this study is to investigate biochemical properties of water-soluble extracellular polysaccharide (WSP) from a novel bacterial strain designated to CA-1 and classified to Rhizobium massiliae by 16S rDNA sequence determination and homology analysis. The main composition of WSP was determined to be glucose by HPAEC. We evaluated immunomodulatory effects of WSP on RAW 264.7 macrophage activation. The results showed that the WSP dose-dependently induced the release of the pro-inflammatory cytokines such as TNF-α and IL-6. In addition, WSP induced nitric oxide synthase (iNOS) expression and increased the production of nitric oxide (NO). Intriguingly, WSP remarkably increased the mRNA expression of Toll-like receptor- 2 (TLR-2) and the phosphorylation of MAPKs (ERK, JNK and p38) in RAW 264.7 cells. These results indicated that WSP activates macrophages to secrete pro-inflammatory cytokines and induces iNOS expression via the activation of the TLR-2/MAPKs signaling pathways. Conclusively, we suggest that WSP of R. massiliae CA-1 can be a new immunomodulatory enhancing the early innate immunity.  相似文献   

10.
《Reproductive biology》2022,22(1):100595
Leydig cells are responsible for testosterone production in male testis upon stimulation by luteinizing hormone. Inflammation and oxidative stress related Leydig cell dysfunction is one of the major causes of male infertility. Cytoglobin (CYGB) and Neuroglobin (NGB) are two globin family member proteins which protect cells against oxidative stress.In the current study, we established a Lipopolysaccharide (LPS)-induced inflammation model in TM3 Leydig cell culture to study the function of CYGB and NGB proteins under inflammatory conditions. CYGB and NGB were downregulated using siRNA and shRNA based experimental strategies. Overexpression was conducted using lentiviral pLenti-III-CYGB-2A-GFP, and pLenti-III-NGB-2A-GFP vector systems. As testicular macrophages regulate immune function upon inflammation and steroidogenesis of Leydig cells, we generated direct/indirect co-culture systems of TM3 and mouse macrophage (RAW264.7) cells ex vivo.Downregulation of CYGB and NGB induced nitride oxide (NO) release, blocked cell cycle progression, reduced testosterone production and increased inflammatory and apoptotic pathway gene expression in the presence and absence of LPS. On the other hand, CYGB and NGB overexpression reduced TNFα and COX-2 protein expressions and increased the expression of testosterone biogenesis pathway genes upon LPS stimulation. In addition, CYGB and NGB overexpression upregulated testosterone production. The present study successfully established an inflammatory interaction model of TM3 and RAW264.7 cells. Suppression of CYGB and NGB in TM3 cells changed macrophage morphology, enhanced macrophage cell number and NO release in co-culture experiments upon LPS exposure.In summary, these results demonstrate that globin family members might control LPS induced inflammation by regulating apoptotic mechanisms and macrophage response.  相似文献   

11.
We recently showed that lycopene inhibited lipopolysaccharide (LPS)-induced productions of nitric oxide (NO) and interleukin-6 (IL-6) in murine RAW264.7 macrophages by mechanisms related to inhibition of ERK and nuclear factor-κB. Since the assembly of Toll-like receptor 4 (TLR4) in lipid rafts is a key element in LPS induced signaling, we investigated whether this process would be influenced by lycopene. We found that pretreatment of RAW264.7 cells with lycopene inhibited LPS-induced recruitment of TLR4 into fractions — enriched with lipid raft marker. By the methods of immunoprecipitation and immunoblotting, we also found that lycopene inhibited the subsequent formation of the complex of TLR4 with its adaptors including myeloid differentiation primary-response protein 88 and TIR domain–containing adaptor-inducing IFN-β. We also found that the lycopene induced inhibition was associated with reduced formation of reactive oxygen species (ROS), which was an upstream mechanism for the effects of lycopene, because treating the cells with the antioxidant N-acetyl-l-cysteine and NADPH oxidase inhibitor diphenyleneiodonium chloride significantly inhibited LPS-induced recruitment of TLR4 into lipid raft-like domains as well as the production of proinflammatory molecule NO and IL-6. Thus, our findings suggest that lycopene may prevent LPS-induced TLR4 assembly into lipid rafts through reducing intracellular ROS level.  相似文献   

12.
Lipopolysaccharides (LPS) are associated with various inflammatory diseases; therefore, the inhibition of LPS-induced nitric oxide (NO) production may have extensive therapeutic applications. We searched for inhibitors of NO production in the LPS-stimulated murine macrophage-like cell line RAW264.7 from MeOH extracts of marine organisms. The MeOH extract of the marine cyanobacterium Okeania sp., collected in Okinawa, Japan, showed inhibitory activity. Biseokeaniamide A was isolated from the MeOH extract by chromatographic separation. Biseokeaniamide A inhibited NO production without cytotoxicity. It reduced inducible nitric oxide synthase levels and suppressed the expression of IL-1β in LPS-stimulated RAW264.7 cells. Biseokeaniamide A did not inhibit IκBα degradation but inhibited IκBα expression. Thus, biseokeaniamide A, a naturally occurring lipopeptide, was identified as a selective inhibitor of LPS signal transduction.  相似文献   

13.
14.
Immunomodulatory actions exerted by some classes of tryptamines, such as benzoyltryptamine analogues, suggest these molecules as promising candidates to develop new therapies to treat conditions associated to acute and chronic pain and inflammation. N-salicyloyltryptamine (STP) was observed to act as an anticonvulsive agent and exert antinociceptive effects in mouse. In the present work, we performed a screening of cytotoxic, cytoprotective, immunomodulatory, and redox properties of STP in RAW 264.7 macrophages challenged with hydrogen peroxide and LPS. Our results show that STP presents no cytotoxicity in the range of 0.001 to 1 μg/mL, but doses of 50 and 100 μg/mL caused loss of cell viability (IC50?=?22.75 μg/mL). Similarly, STP at 0.001 to 1 μg/mL did not cause oxidative stress to RAW 264.7 cells, although it did not prevent cell death induced by H2O2 0.5 mM. At 1 μg/mL, STP reversed some redox and inflammatory parameters induced by LPS. These include thiol (sulfhydryl) oxidation, superoxide dismutase activation, and morphological changes associated to macrophage activation. Besides, STP significantly inhibited LPS-induced TNF-α and IL-1β release, as well as CD40 and TNF-α protein upregulation. Signaling events induced by LPS, such as phosphorylation of ERK 1/2 and IκBα and p65 nuclear translocation (NF-kB activation) were also inhibited by STP. These data indicate that STP is able to modulate inflammatory parameters at doses that do not interfere in cell viability.  相似文献   

15.
Lentinan, a cell wall β-glucan from the fruiting bodies of Lentinus edodes, is well known to be a biological defense modifier, but the signal transduction pathway(s) induced by Lentinan have not been elucidated. In this study, we extracted Lentinan (LNT-S) by ultrasonication from Lentinus edodes and report that, in murine RAW 264.7 macrophages, LNT-S glucan activated NF-κB p65 and triggered its nuclear translocation as determined by Western blotting. Moreover, LNT-S enhanced NF-κB-luciferase activity in the Dual-Luciferase gene system assay. Its upstream signaling molecules, MAPKs such as ERK1/2 and JNK1/2, were shown to be activated by assessing the level of phosphorylation in a time- and concentration-dependent manner, but its downstream proinflammatory enzyme, inducible NOS, was not observed. The data evaluated using a TNF-α ELISA kit and Griess reagent further demonstrated that no proinflammatory mediators such as TNF-α and NO were produced by LNT-S stimulation in RAW 264.7 cells. In contrast, LPS significantly induced inducible NOS expression and increased NO and TNF-α production, which are associated with activation of the NF-κB p65/p50 heterodimer complex. It is possible that LNT-S did not activate NF-κB p65/p50, and the activation of NF-κB p65 was not sufficient to stimulate cytokine production. These data demonstrate that LNT-S glucan carries out its immunomodulating activity by activating MAPK signaling pathways without secretion of TNF-α and NO.  相似文献   

16.
17.
Dioscorealide B (DB), a naphthofuranoxepin has been purified from an ethanolic extract of the rhizome of Dioscorea membranacea Pierre ex Prain & Burkill which has been used to treat inflammation and cancer in Thai Traditional Medicine. Previously, DB has been reported to have anti‐inflammatory activities through reducing nitric oxide (NO) and tumor necrosis factor‐α (TNF‐α) production in lipopolysaccharides (LPS)‐induced RAW 264.7 macrophage cells. In this study, the mechanisms of DB on LPS‐induced NO production and cytokine expression through the activation of nuclear factor‐κB (NF‐κB) and ERK1/2 are demonstrated in RAW 264.7 cells. Through measurement with Griess's reagent, DB reduced NO level with an IC50 value of 2.85 ± 0.62 µM that was due to the significant suppression of LPS‐induced iNOS mRNA expression as well as IL‐1β, IL‐6, and IL‐10 mRNA at a concentration of 6 µM. At the signal transduction level, DB significantly inhibited NF‐κB binding activity, as determined using pNFκB‐Luciferase reporter system, which action resulted from the prevention of IκBα degradation. In addition, DB in the range of 1.5–6 µM significantly suppressed the activation of the ERK1/2 protein. In conclusion, the molecular mechanisms of DB on the inhibition of NO production and mRNA expression of iNOS, IL‐1β, IL‐6, and IL‐10 were due to the inhibition of the upstream kinases activation, which further alleviated the NF‐κB and MAPK/ERK signaling pathway in LPS‐induced RAW264.7 macrophage cells. J. Cell. Biochem. 109: 1057–1063, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
20.

Aims

Food-derived peptides have been reported to yield a variety of health promoting activities. Pyroglutamyl peptides are contained in the wheat gluten hydrolysate. In the present study, we investigated the effect of pyroglutamyl dipeptides on the lipopolysaccharide (LPS)-induced inflammation in macrophages.

Main methods

RAW 264.7 macrophages were treated with LPS and various concentrations of pyroglutamyl-leucine (pyroGlu-Leu), -valine (pyroGlu-Val), -methionine (pyroGlu-Met), and -phenylalanine (pyroGlu-Phe). Cell viability/proliferation and various inflammatory parameters were measured by the established methods including ELISA and western blotting. The binding of fluorescein isothiocyanate-labeled LPS to RAW 264.7 cells was also measured fluorescently.

Key findings

All the tested dipeptides significantly inhibited the secretion of nitric oxide, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 from LPS-stimulated RAW 264.7 macrophages. Above all, pyroGlu-Leu inhibited the secretion of all these inflammatory mediators even at the lowest dose (200 μg/ml). PyroGlu-Leu dose-dependently suppressed IκBα degradation and MAPK (JNK, ERK, and p38) phosphorylation in LPS-stimulated RAW 264.7 cells. On the other hand, it did not affect the binding of LPS to the cell surface.

Significance

Our results indicated that pyroGlu-Leu inhibits LPS-induced inflammatory response via the blocking of NF-κB and MAPK pathways in RAW 264.7 macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号