共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Thorpe SD Buckley CT Vinardell T O'Brien FJ Campbell VA Kelly DJ 《Biochemical and biophysical research communications》2008,377(2):458-462
The objective of this study was to investigate the influence of dynamic compressive loading on chondrogenesis of mesenchymal stem cells (MSCs) in the presence of TGF-β3. Isolated porcine MSCs were suspended in 2% agarose and subjected to intermittent dynamic compression (10% strain) for a period of 42 days in a dynamic compression bioreactor. After 42 days in culture, the free-swelling specimens exhibited more intense alcian blue staining for proteoglycans, while immunohistochemical analysis revealed increased collagen type II immunoreactivity. Glycosaminoglycan (GAG) content increased with time for both free-swelling and dynamically loaded constructs, and by day 42 it was significantly higher in both the core (2.5 ± 0.21%w/w vs. 0.94 ± 0.03%w/w) and annulus (1.09 ± 0.09%w/w vs. 0.59 ± 0.08%w/w) of free-swelling constructs compared to dynamically loaded constructs. This result suggests that further optimization is required in controlling the biomechanical and/or the biochemical environment if such stimuli are to have beneficial effects in generating functional cartilaginous tissue. 相似文献
3.
4.
Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells 总被引:24,自引:0,他引:24
Timper K Seboek D Eberhardt M Linscheid P Christ-Crain M Keller U Müller B Zulewski H 《Biochemical and biophysical research communications》2006,341(4):1135-1140
5.
Koga H Muneta T Nagase T Nimura A Ju YJ Mochizuki T Sekiya I 《Cell and tissue research》2008,333(2):207-215
We previously compared mesenchymal stem cells (MSCs) from a variety of mesenchymal tissues and demonstrated that synovium-MSCs had the best expansion and chondrogenic ability in vitro in humans and rats. In this study, we compared the in vivo chondrogenic potential of rabbit MSCs. We also examined other parameters to clarify suitable conditions for in vitro and in vivo cartilage formation. MSCs were isolated from bone marrow, synovium, adipose tissue, and muscle of adult rabbits. Proliferation potential and in vitro chondrogenic potential were compared. Toxicity of the tracer DiI for in vitro chondrogenesis was also examined. MSCs from each tissue were embedded in collagen gel and transplanted into full thickness cartilage defects of rabbits. Cartilage matrix production was compared histologically. The effects of cell density and periosteal patch on the in vivo chondrogenic potential of synovium-MSCs were also examined. Synovium- and muscle-MSCs had a higher proliferation potential than other cells. Pellets from synovium- and bone-marrow-MSCs showed abundant cartilage matrix. DiI had no significant influence on in vitro cartilage formation. After transplantation into cartilage defects, synovium- and bone-marrow-MSCs produced much more cartilage matrix than other cells. When synovium-MSCs were transplanted at a higher cell density and with a periosteal patch, more abundant cartilage matrix was observed. Thus, synovium- and bone-marrow-MSCs had greater in vivo chondrogenic potential than adipose- and muscle-MSCs, but synovium-MSCs had the advantage of a greater proliferation potential. Higher cell density and a periosteum patch were needed to obtain a high production of cartilage matrix by synovium-MSCs. 相似文献
6.
In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells 总被引:10,自引:0,他引:10
Chen J Wang C Lü S Wu J Guo X Duan C Dong L Song Y Zhang J Jing D Wu L Ding J Li D 《Cell and tissue research》2005,319(3):429-438
The purpose of this study has been to investigate the possible effects of the normal joint cavity environment on chondrocytic differentiation of bone-marrow-derived mesenchymal stem cells (MSCs). Autologous bone marrow was aspirated from the iliac crest of male sheep. MSCs were purified, expanded, and labeled with the fluorescent dye PKH26. Labeled MSCs were then grown on a three-dimensional porous scaffold of poly (L-lactic-co-glycolic acid) in vitro and implanted into the joint cavity by a surgical procedure. At 4 or 8 weeks after implantation, the implants were removed for histochemical and immunohistochemical analysis. The cells labeled with red fluorescent PKH26 in the implants expressed type II collagen and synthesized sulfated proteoglycans. However, the osteoblast-specific marker, osteocalcin, was not detected by immunohistochemistry indicating that the implanted MSCs had not differentiated into osteoblasts by being directly exposed to the normal joint cavity. To investigate the possible factors involved in chondrocytic differentiation of MSCs further, we co-cultured sheep MSCs with the main components of the normal joint cavity, viz., synovial fluid or synovial cells, in vitro. After 1 or 2 weeks of co-culture, the MSCs in both co-culture systems expressed markers of chondrogenesis. These results suggest that synovial fluid and synovium from normal joint cavity are important for the chondrocytic differentiation of adult bone-marrow-derived MSCs.This work was supported by the National Natural Science Foundation of China (nos. 39900036, 20174006, and 20221402), the National Advanced Technology Programs of China (nos. 2003AA744051, 2003AA205041), the Award Foundation for Young Teachers from the Ministry of Education, 973 project (no. G1999054306-03), and the 248 key innovative project of Beijing (no. H010210190123). 相似文献
7.
Shomari DL Zack-Williams Peter E Butler Deepak M Kalaskar 《World journal of stem cells》2015,7(1):51-64
Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental model shave been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells(ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury(PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair. 相似文献
8.
Débora Levy Jorge Luis Maria Ruiz Andrea Turbuck Celestino Suelen Feitoza Silva Adilson Kleber Ferreira Cesar Isaac Sérgio Paulo Bydlowski 《Biochemical and biophysical research communications》2014
Oxysterols comprise a very heterogeneous group derived from cholesterol through enzymatic and non-enzymatic oxidation. Among them, 7-ketocholesterol (7-KC) is one of the most important. It has potent effects in cell death processes, including cytoxicity and apoptosis induction. Mesenchymal stem cells (MSCs) are multipotent cells characterized by self-renewal and cellular differentiation capabilities. Very little is known about the effects of oxysterols in MSCs. Here, we describe the short-term cytotoxic effect of 7-ketocholesterol on MSCs derived from human adipose tissue. MSCs were isolated from adipose tissue obtained from two young, healthy women. After 24 h incubation with 7-KC, mitochondrial hyperpolarization was observed, followed by a slight increase in the level of apoptosis and changes in actin organization. Finally, the IC50 of 7-KC was higher in these cells than has been observed or described in other normal or cancer cell lines. 相似文献
9.
Kim SJ Cho HH Kim YJ Seo SY Kim HN Lee JB Kim JH Chung JS Jung JS 《Biochemical and biophysical research communications》2005,329(1):25-31
Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation. 相似文献
10.
11.
Carolyn Algire Dasa Medrikova Stephan Herzig 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(5):896-904
Epidemiological studies estimate that by the year 2030, 2.16 billion people worldwide will be overweight and 1.12 billion will be obese [1]. Besides its now established function as an endocrine organ, adipose tissue plays a fundamental role as an energy storage compartment. As such, adipose tissue is capable of extensive expansion or retraction depending on the energy balance or disease state of the host, a plasticity that is unparalleled in other organs and – under conditions of excessive energy intake – significantly contributes to the afore mentioned obesity pandemic. Expansion of adipose tissue is driven by both hypertrophy and hyperplasia of adipocytes, which can renew frequently to compensate for cell death. This underlines the importance of adipocyte progenitor cells within the distinct adipose tissue depots to control both energy storage and endocrine functions of adipose tissue. Here we summarize recent findings on the identity and plasticity of adipose stem cells, the involved signaling cascades, and potential clinical implications of these cells for the treatment of metabolic dysfunction in obesity. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease. 相似文献
12.
猪脂肪间充质干细胞的分离培养及其成脂分化 总被引:3,自引:0,他引:3
脂肪间充质干细胞(Adipose mesenchymal stemcell,AMSCs)是一类来源于脂肪组织并具有多向分化潜能的干细胞。近年来的研究证明,脂肪组织具有取材方便和干细胞含量高的优势,有望在研究与应用领域成为骨髓干细胞的替代物。猪是一种比啮齿类更接近人类的模式动物,具有较强的脂肪沉积能力。本研究探讨了猪脂肪间充质干细胞的体外分离纯化、培养扩增和向脂肪细胞诱导分化的条件。采用Ⅰ型胶原酶消化分离脂肪微管基质成分,传代培养扩增,流式细胞仪检测细胞表面标记。取第3-7代AMSCs,采用不同方法诱导AMSCs向脂肪细胞分化,光学显微镜下可观察到诱导后的细胞内有高折光性的小脂滴出现,油红O染色成阳性,不同诱导方法诱导率不同。被诱导细胞用RT-PCR可检测到脂肪细胞分化标志基因LPL和PPARγ的表达。结果表明可以从脂肪组织中分离培养出AMSCs,经传代后可提高其纯度。CD44、CD105表达呈阳性,CD14、CD34、S-100、HLA-DR呈阴性,在合适的诱导条件下,可向脂肪细胞分化。 相似文献
13.
Ziqing Dong Lin Luo Yunjun Liao Yunsong Zhang Jianhua Gao Rei Ogawa Chunquan Ou Ming Zhu Bo Yang Feng Lu 《Tissue & cell》2014
Liposuction aspirates separate into fatty and fluid portions. Cells isolated from the fatty portion are termed processed lipoaspirate (PLA) cells and isolated from the fluid portion termed liposuction aspirate fluid (LAF) cells, both of which contain adipose-derived stromal cells (ASCs). Here, we examined the biological differences between PLA and LAF cells and then tested the differentiation capacity of LAF cells in vivo. The cell surface marker and the multiple differentiation ability of fresh isolated PLA and LAF cells and which from passaged 3–5 were examined in vitro. LAF cells were then incubated in adipogenic medium, stained with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine (DiI), mixed with fibrin glue then injected to nude mice; fibrin glue without cells was as a control. Three months later, the transplants were subjected to macroscopic observation and histological analysis. PLA and LAF cells were similar in growth kinetics, morphology, capacity for differentiation, and surface marker profiles. After plating, both PLA and LAF cells showed increased expression of CD29, CD44, CD133 and HLA DR and decreased expression of CD34. In vivo differentiation assay showed the mixture of LAF cells and fibrin glue formed adipose tissue which contained red fluorescent DiI-positive adipocytes. LAF cells can be harvested more easily than PLA cells. The in vivo adipogenic capacity suggested LAF cells would be useful and valuable for cell-based therapies and soft tissue reconstruction. 相似文献
14.
Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes 总被引:47,自引:0,他引:47
Gaustad KG Boquest AC Anderson BE Gerdes AM Collas P 《Biochemical and biophysical research communications》2004,314(2):420-427
We report the differentiation of human adipose tissue stem cells (ATSCs) to take on cardiomyocyte properties following transient exposure to a rat cardiomyocyte extract. Reversibly permeabilized ATSCs were incubated for 1h in a nuclear and cytoplasmic extract of rat cardiomyocytes, resealed with CaCl(2), and cultured. Three weeks after exposure to extract, ATSCs expressed several cardiomyocyte markers including sarcomeric alpha-actinin, desmin, and cardiac troponin I, and displayed targeted expression of the gap junction protein connexin 43. Formation of binucleated and striated cells, and spontaneous beating in culture were also observed. A low proportion of intact ATSCs exposed to the extract also showed signs of alpha-actinin and connexin 43 expression. Additional evidence of differentiation was provided by induction of expression of nuclear lamin A/C, a marker of terminally differentiated cells, and a remarkable increase in cell cycle length. Together with our previous data, this study suggests that alteration of cell fate using cellular extracts may be applied to multiple cell types. Cell extracts may also prove useful for investigating the molecular mechanisms of stem cell differentiation. 相似文献
15.
Venkata Ramesh Dasari Krishna Kumar Veeravalli Dzung H Dinh 《World journal of stem cells》2014,6(2):120-133
With technological advances in basic research,the intricate mechanism of secondary delayed spinal cord injury(SCI)continues to unravel at a rapid pace.However,despite our deeper understanding of the molecular changes occurring after initial insult to the spinal cord,the cure for paralysis remains elusive.Current treatment of SCI is limited to early administration of high dose steroids to mitigate the harmful effect of cord edema that occurs after SCI and to reduce the cascade of secondary delayed SCI.R ecent evident-based clinical studies have cast doubt on the clinical benefit of steroids in SCI and intense focus on stem cell-based therapy has yielded some encouraging results.An array of mesenchymal stem cells(MSCs)from various sources with novel and promising strategies are being developed to improve function after SCI.In this review,we briefly discuss the pathophysiology of spinal cord injuries and characteristics and the potential sources of MSCs that can be used in the treatment of SCI.We will discuss the progress of MSCs application in research,focusing on the neuroprotective properties of MSCs.Finally,we will discuss the results from preclinical and clinical trials involving stem cell-based therapy in SCI. 相似文献
16.
17.
Comparison of rat mesenchymal stem cells derived from bone marrow,synovium, periosteum,adipose tissue,and muscle 总被引:18,自引:0,他引:18
Yoshimura H Muneta T Nimura A Yokoyama A Koga H Sekiya I 《Cell and tissue research》2007,327(3):449-462
Mesenchymal stem cells (MSCs) are increasingly being reported as occurring in a variety of tissues. Although MSCs from human
bone marrow are relatively easy to harvest, the isolation of rodent MSCs is more difficult, thereby limiting the number of
experiments in vivo. To determine a suitable cell source, we isolated rat MSCs from bone marrow, synovium, periosteum, adipose,
and muscle and compared their properties for yield, expansion, and multipotentiality. After two passages, the cells in each
population were CD11b (−), CD45 (−), and CD90 (+). The colony number per nucleated cells derived from synovium was 100-fold
higher than that for cells derived from bone marrow. With regard to expansion potential, synovium-derived cells were the highest
in colony-forming efficiency, fold increase, and growth kinetics. An in vitro chondrogenesis assay demonstrated that the pellets
derived from synovium were heavier, because of their greater production of cartilage matrix, than those from other tissues,
indicating their superiority in chondrogenesis. Synovium-derived cells retained their chondrogenic potential after a few passages.
The Oil Red-O positive colony-rate assay demonstrated higher adipogenic potential in synovium- and adipose-derived cells.
Alkaline phosphatase activity was greater in periosteum- and muscle-derived cells during calcification. The yield and proliferation
potential of rat MSCs from solid tissues was much better than those from bone marrow. In particular, synovium-derived cells
had the greatest potential for both proliferation and chondrogenesis, indicating their usefulness for cartilage study in a
rat model.
This study was supported in part by grants from the Japan Latest Osteoarthritis Society and from the Center of Excellence
Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone in Tokyo Medical and Dental University
(to T.M.), and by the Japan Society for the Promotion of Science (grant no. 18591657 to I.S.). Recombinant human bone morphogenetic
protein-2 was kindly provided by Astellas Pharma. 相似文献
18.
Ude CC Shamsul BS Ng MH Chen HC Norhamdan MY Aminuddin BS Ruszymah BH 《Tissue & cell》2012,44(3):156-163
Tracking of transplanted cells has become an important procedure in cell therapy. We studied the in vitro dye retention, survival and in vivo tracking of stem cells with PKH26 dye. Sheep BMSCs and ADSCs were labeled with 2, 4 and 8 μmol of PKH26 and monitored for six passages. Labeled BMSCs and ADSCs acquired mean cumulative population doubling of 12.7 ± 0.4 and 14.6 ± 0.5; unlabeled samples had 13.8 ± 0.5 and 15.4 ± 0.6 respectively. Upon staining with 2, 4 and 8 μmol PKH26, BMSCs had retentions of 40.0 ± 5.8, 60.0 ± 2.9 and 95.0 ± 2.9%, while ADSCs had 92.0 ± 1.2, 95.0 ± 1.2 and 98.0 ± 1.2%. ADSCs retentions were significantly higher at 2 and 4 μmol. On dye retention comparison at 8 μmol and 4 μmol for BMSCs and ADSCs; ADSCs were significantly higher at passages 2 and 3. The viability of BMSCs reduced from 94.0 ± 1.2% to 90.0 ± 0.6% and ADSCs from 94.0 ± 1.2% to 52.0 ± 1.2% (p < 0.05) after 24 h. BMSCs had significant up regulation of the cartilage genes for both the labeled and the unlabeled samples compared to ADSCs (p < 0.05). PKH26 fluorescence was detected on the resected portions of the regenerated neo-cartilage. The recommended concentration of PKH26 for ADSCs is 2 μmol and BMSCs is 8 μmol, and they can be tracked up to 49 days. 相似文献
19.
20.
Ma T 《World journal of stem cells》2010,2(2):13-17
Human mesenchymal stem cells (hMSCs) have tremendous promise for use in a variety of clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues makes them an attractive cell source for a new generation of cell-based regenerative therapies. Encouraging results from clinical trials have also generated growing enthusiasm regarding MSC therapy and related treatment, but gaps remain in understanding MSC tissue repair mechanisms and in clinical strategies for efficient cell delivery and consistent therapeutic outcomes. For these reasons, discoveries from basic research and their implementation in clinical trials are essential to advance MSC therapy from the laboratory bench to the patient's bedside. 相似文献