首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
O-linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer’s and Parkinson’s diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.  相似文献   

3.
The C-1-phosphonate analogue of UDP-GlcNAc has been synthesized using an alpha-configured C-1-aldehyde as a key intermediate. Addition of the anion of diethyl phosphate to the aldehyde produced the hydroxyphosphonate. The configuration of this key intermediate was determined by X-ray crystallography. Deoxygenation, coupling of the resulting phosphonic acid with UMP and deprotection gave the target molecule as a di-sodium salt. This analogue had no detectable activity as an inhibitor of (OGT).  相似文献   

4.
A large number of O-linked N-acetylglucosamine (O-GlcNAc) residues have been mapped in vertebrate proteins, however targets of O-GlcNAcylation in plants still have not been characterized. We show here that O-GlcNAcylation of the N-terminal region of the capsid protein of Plum pox virus resembles that of animal proteins in introducing O-GlcNAc monomers. Thr-19 and Thr-24 were specifically O-GlcNAcylated. These residues are surrounded by amino acids typical of animal O-GlcNAc acceptor sites, suggesting that the specificity of O-GlcNAc transferases is conserved among plants and animals. In laboratory conditions, mutations preventing O-GlcNAcylation of Thr-19 and Thr-24 did not have noticeable effects on PPV competence to infect Prunus persicae or Nicotiana clevelandii. However, the fact that Thr-19 and Thr-24 are highly conserved among different PPV strains suggests that their O-GlcNAc modification could be relevant for efficient competitiveness in natural conditions.  相似文献   

5.
6.
Kim HS  Kim EM  Lee J  Yang WH  Park TY  Kim YM  Cho JW 《FEBS letters》2006,580(9):2311-2316
The objective of this study was to identify proteins modified with O-linked N-acetylglucosamine (O-GlcNAc) in pancreatic beta-cells and to understand their roles in cell death under hyperglycemic conditions. Here we report that heat shock protein 60 (HSP60) is modified with O-GlcNAc. Levels of O-GlcNAcylated HSP60 increased twofold in response to hyperglycemic conditions. HSP60 is a chaperonin known to bind to Bax in the cytoplasm under normoglycemic conditions. Under hyperglycemic conditions, Bax detached from O-GlcNAcylated HSP60 and translocated to mitochondria. Hyperglycemic conditions were also associated with cytochrome c release, caspase-3 activation, and cell death, suggesting that elevated O-GlcNAcylation of HSP60 interferes with HSP60-Bax interactions, leading to pancreatic beta-cell death.  相似文献   

7.
8.
Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.  相似文献   

9.
10.
11.

Background

DNA replication represents a critical step of the cell cycle which requires highly controlled and ordered regulatory mechanisms to ensure the integrity of genome duplication. Among a plethora of elements, post-translational modifications (PTMs) ensure the spatiotemporal regulation of pivotal proteins orchestrating cell division. Despite increasing evidences showing that O-GlcNAcylation regulates mitotic events, the impact of this PTM in the early steps of the cell cycle remains poorly understood.

Methods and results

Quiescent MCF7 cells were stimulated by serum mitogens and cell cycle progression was determined by flow cytometry. The levels of O-GlcNAc modified proteins, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) were examined by Western blotting and OGA activity was measured during the progression of cells towards S phase. A global decrease in O-GlcNAcylation was observed at S phase entry, concomitantly to an increase in the activity of OGA. A combination of two-dimensional electrophoresis, Western blotting and mass spectrometry was then used to detect and identify cell cycle-dependent putative O-GlcNAcylated proteins. 58 cytoplasmic and nuclear proteins differentially O-GlcNAcylated through G1/S transition were identified and the O-GlcNAc variations of Cytokeratin 8, hnRNP K, Caprin-1, Minichromosome Maintenance proteins MCM3, MCM6 and MCM7 were validated by immunoprecipitation.

Conclusions

The dynamics of O-GlcNAc is regulated during G1/S transition and observed on key proteins involved in the cytoskeleton networks, mRNA processing, translation, protein folding and DNA replication.

General significance

Our results led us to propose that O-GlcNAcylation joins the PTMs that take part in the regulation of DNA replication initiation.  相似文献   

12.
RNA polymerase II carboxyl-terminal domain (RNAPII CTD) phosphatases are responsible for the dephosphorylation of the C-terminal domain of the small subunit of RNAPII in eukaryotes. Recently, we demonstrated the identification of several interacting partners with human small CTD phosphatase1 (hSCP1) and the substrate specificity to delineate an appearance of the dephosphorylation catalyzed by SCP1. In this study, using the established cells for inducibly expressing hSCP1 proteins, we monitored the modification of β-O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is one of the most common post-translational modifications (PTMs). To gain insight into the PTM of hSCP1, we used the Western blot, immunoprecipitation, succinylayed wheat germ agglutininprecipitation, liquid chromatography-mass spectrometry analyses, and site-directed mutagenesis and identified the Ser41 residue of hSCP1 as the O-GlcNAc modification site. These results suggest that hSCP1 may be an O-GlcNAcylated protein in vivo, and its N-terminus may function a possible role in the PTM, providing a scaffold for binding the protein(s). [BMB Reports 2014; 47(10): 593-598]  相似文献   

13.
Bao WB  Ye L  Zi C  Su XM  Pan ZY  Zhu J  Zhu GQ  Huang XG  Wu SL 《Gene》2012,497(2):336-339
Escherichia coli (E. coli) that produces adhesin F18 is the main pathogen responsible for porcine post-weaning diarrhea and edema disease. The receptor for E. coli F18 has not been described in pigs, however the alpha (1,2)-fucosyltransferase (FUT1) gene on chromosome 6 has been proposed as a candidate. The objective of this study, therefore, was to investigate the relationship between FUT1 gene expression and E. coli F18 receptor in Sutai pigs of different ages (8-, 18-, 30- and 35-day-old). FUT1 gene expression was detected in 11 pig tissues with the highest level in lung, and expressed consistently at the four time points. In most tissues, FUT1 gene expression levels decreased from days 8 to 18, then continually increased on days 30 and 35, with expression around weaning time higher than that on day 8. Gene ontology and pathway analysis showed that FUT1 was involved in 32 biological processes, mainly those integral to the membrane, or involved in glycosylation, as well as regulation of binding, interestingly participating in three pathways related to glycosphingolipid biosynthesis. From this analysis and the high linkage disequilibrium between the FUT1 gene and the E. coli F18 receptor locus, we can speculate that higher expression of the FUT1 gene in small intestine is beneficial to the formation of receptors to the E. coli F18 strain and is related to the sensitivity to the pathogen.  相似文献   

14.
15.
Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 Å, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.  相似文献   

16.
RNase E is an endoribonuclease that has been studied primarily in Escherichia coli, where it is prominently involved in the processing and degradation of RNA. Homologs of bacterial RNase E are encoded in the nuclear genome of higher plants. RNA degradation in the chloroplast, an organelle that originated from a prokaryote similar to cyanobacteria, occurs via the polyadenylation-assisted degradation pathway. In E. coli, this process is probably initiated with the removal of 5'-end phosphates followed by endonucleolytic cleavage by RNase E. The plant homolog has been proposed to function in a similar way in the chloroplast. Here we show that RNase E of Arabidopsis is located in the soluble fraction of the chloroplast as a high molecular weight complex. In order to characterize its endonucleolytic activity, Arabidopsis RNase E was expressed in bacteria and analyzed. Similar to its E. coli counterpart, the endonucleolytic activity of the Arabidopsis enzyme depends on the number of phosphates at the 5' end, is inhibited by structured RNA, and preferentially cleaves A/U-rich sequences. The enzyme forms an oligomeric complex of approximately 680 kDa. The chloroplast localization and the similarity in the two enzymes' characteristics suggest that plant RNase E participates in the initial endonucleolytic cleavage of the polyadenylation-stimulated RNA degradation process in the chloroplast, perhaps in collaboration with the two other chloroplast endonucleases, RNase J and CSP41.  相似文献   

17.
18.
The capsid protein of Plum pox virus (PPV-CP) is modified with O-linked GlcNAc (O-GlcNAc). While Arabidopsis has two O-GlcNAc transferases, SECRET AGENT (SEC) and SPINDLY (SPY), previous work suggests that SEC modifies PPV-CP and that the modification plays a role in the infection process. Here, we show that when co-expressed in Escherichia coli SEC modifies PPV-CP. Deletion mapping and site-directed mutagenesis identified three threonine and a serine located near the N-terminus of PPV-CP that are modified by SEC. Two of these threonines have recently been shown to be modified in virus from plants suggesting that SEC has the same specificity in plants and E. coli.  相似文献   

19.
Mono-O-glycosylations post-translationally regulate the activity of nucleocytoplasmic proteins. We showed that glucosamine and an inhibitor of deglycosylation (PUGNAc) induced O-glycosylation of FoxO1, resulting in increased expression of a glucose-6-phosphatase reporter gene. This effect was independent of FoxO1 re-localisation, since it was also observed with constitutively nuclear FoxO1-AAA mutant. Moreover, in HepG2 cells, glucosamine and PUGNAc have a synergistic effect on the glucose-6-phosphatase reporter gene, and this effect was inhibited by FoxO1 siRNAs. Since glucose-6-phosphatase plays a key role in hepatic glucose production, our observation may be of importance with regard to glucotoxicity associated with chronic hyperglycaemia in diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号