首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article compares four models of amplitude fluctuations in postsynaptic potentials. The convolution of two binomial distributions and the beta model proved the best fit with experimentally obtained data (as compared with the binomial model). The beta model is based on the assumption that the probability of quantal transmitter release is a random variable with a beta distribution. Numbers of quantal generators as estimated by the beta model were found to resemble numbers of morphological identifiable synaptic boutons. Findings from research using this model showed that the binomial parameter n may be interpreted as the number of transmitter release sites functioning with a probability in excess of 0.2. The findings obtained confirm the postulated functional diversity of release sites at interneuronal synapses.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 780–788, November–December, 1989.  相似文献   

2.
Structuro-functional correlations in the organization of connections between primary afferent fibers and motoneurons were investigated in the lumbar segments of spinal cord from 1–2-week-old rats. A single afferent fiber collateral was found to make contact with an individual motoneuron. There could be up to 10 boutons making contact. The n parameter of the binomial model was found to reflect numbers of contacts in the sensorimotor synapse. Analysis of sensorimotor EPSP by convolution of two binomial distributions revealed that neurotransmitter release sites differ in degree of probability (efficacy) of combined response to the arrival of nerve impulses.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry. Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 522–529, July–August, 1989.  相似文献   

3.
The effects were studied of ethimizol, a substance activating memory processes, on features of synaptic transmission during experiments on frog cutaneous pectoris muscle. It was found that the presynaptic action of ethimizol consists of raising the frequency of miniature potentials, when used at a concentration of 0.5–10 mM, and modulating quantal content of synaptic transmission due to changes in binomial quantal release parameters p and n when 0.5–2 mM ethimizol was used. This substance facilitated transmission at synapses with a low initial level of transmitter release. This substance facilitated transmission at synapses with a low initial level of transmitter release. Ethimizol was also found to have a postsynaptic action, consisting of reducing amplitude at a concentration of 5–10 mM and prolonging synaptic currents and potentials when concentrations of 0.5–10 mM were used. The latter effect produced a considerable increase in the time integral of endplate potentials. The postsynaptic action of ethimizol is perhaps seen in its effects on features of postsynaptic ionic channels. The effects of ethimizol are discussed with a view to how it may act within the central nervous system as a nonspecific modulator.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 757–763, November–December, 1985.  相似文献   

4.
Discrete distributions of amplitude of basic EPSP in vertebrate interneuronal synapses were obtained using the maximum likelihood method. Unequal intervals found between the values of calculated densities indicate the quantal nature of the signal. It was shown that quantal levels of nerve impulse transmission due to the structural arrangement of interneuronal connections may be distinguished using a binomial model, approximating as it does to empirical distributions. Systematic discrepancies between empirical and modeled distributions indicate the need to extend the model, however.A. A. Zhdanov State University, Leningrad; I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry; Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 4, pp. 479–487, July–August, 1988.  相似文献   

5.
A model was produced of generation of postsynaptic current following release of a quantum of neurotransmitter from the nerve ending, whereby the law of current density attenuation is defined as j=I/rb (A), where I is current density at the generation site and j stands at distance r from that site. Coefficient b was shown experimentally to be close to 1 using extracellular techniques of signal recording. Assuming that sites of signal generation and transmitter release are spatially identical, a new technique for determining the coordinates of the transmitter release site in the motor nerve terminal is suggested. This consists of measuring uniquantal signal amplitude by means of three extracellular microelectrodes spaced 5–10 µm apart. We were able to establish, by producing "spatial pictures" of transmitter release based on analysis of several hundred signals in the frog cutaneous pectoris muscle, that release sites are arranged in groups running diagonally to the nerve ending. These groups are thought to reflect transmitter release in active zones of the nerve ending. Advantages, disadvantages, and inaccuracies of the method are identified.S. V. Kurashov Medical Institute, Ministry of Public Health of the RSFSR, Moscow. V. I. Ulyanov-Lenin University, Kazan'. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 309–318, May–June, 1990.  相似文献   

6.
End-plate potentials (EPP) and miniature EPP (MEPP) were recorded in a single neuromuscular synapse of the frog sartorius muscle by means of two microelectrodes with a resistance of 0.5–2.0 M. Groups of signals (fields), reflecting transmitter secretion in spatially distinct release sites were identified by extracellular recording on MEPP amplitude scatter diagrams. Release sites in the nerve ending were found to be unevenly distributed, to be grouped in certain areas, and to differ in their probability of secretion of a quantum of transmitter. Comparison of fields on MEPP and uniquantal EPP amplitude scatter diagrams in solution with low Ca++ concentration (0.2–0.4 mM) showed that ability to induce evoked and spontaneous transmitter release at the release site differs, and that sometimes a release site does not participate in evoked secretion. The results of simultaneous recording of synaptic potentials using extra- and intracellular electrodes indicate that transmitter secretion in spatially distinct groups of release sites leads to the appearance of polymodality in the distribution of amplitudes of intracellularly recorded MEPP and uniquantal EPP.S. V. Kurashov Medical Institute, Ministry of Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 152–160, March–April, 1985.  相似文献   

7.
Experiments on isolated frog nerve-muscle preparations showed that manganese ions (0.4–5.0 mM) inhibit evoked transmitter release by reducing the quantum composition of the end-plate potentials, and they intensify spontaneous transmitter release to a certain extent by increasing the frequency of miniature potentials. Verapamil (1 · 10–6–5·10–5 g/ml) and D-600 (2.5·10–5 g/ml), by contrast with manganese ions, do not inhibit evoked release, but also intensify spontaneous release of the transmitter. All the agents tested prevent the potentiating effect of imidazole (3 mM). During repetitive stimulation, verapamil disturbs action potential generation in the motor nerve. Manganese ions had no such action. It is concluded that between the calcium channels of motor nerve endings and the calcium channels of heart muscle or the neuron soma there are molecular differences, expressed as sensitivity to the blocking action of verapamil and D-600.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 415–422, July–August, 1977.  相似文献   

8.
Synaptic delay of single-quantum response with low mean quantal size (0.05–1) was measured during experiments on preparations of frog neuromuscular junctions using extracellular focal recording of presynaptic action potentials and endplate currents. It was found that distribution of these synaptic delays is of a polymodal nature and mean intermodal interval equaled 0.22±0.01 msec over 13 experiments. An increase in quantal size produced only a redistribution of mode weighting, while mean modal interval remained unchanged. A reduction in temperature induced an increase in the modal interval with the temperature coefficient Q10=2.42±0.14 (n=15). The explanation is suggested that the process of quantal transmitter release is determined by interaction between the calcium-dependent mechanism for raising the likelihood of release on the one hand and the rhythmic operation of the system producing transmitter release on the other. The latter stage in the process depends on temperature, not intracellular Ca2+ concentration. The polymodal distribution of synaptic delay reflects the rhythmic operation of the transmitter release zone.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 748–756, November–December, 1986.  相似文献   

9.
Transmitter release sites were located in the motor nerve ending of the frog cutaneous-pectoris muscle using three extracellular electrodes. Transmitter release sites were found to be grouped in a direction cutting across the nerve ending and reflecting transmitter release and active release zones (AZ). Measurements from these groups showed that most transmitter release takes place at the center of the AZ, declining towards the periphery and to either side of this zone. All AZ were found to take place in spontaneous release with a low extracellular concentration of calcium ions present, compared with only a proportion in evoked release. Advantages of the triple as opposed to the dual micro-electrode technique are analyzed. It was found that transmitter release in spatially isolated AZ at the nerve ending leads to a polymodal distribution pattern of the amplitude of uniquantal signals during extracellular recording. The part played by AZ in transmitter release is discussed.S. V. Kurashov Medical Institute, Ministry of Health of the RSFSR, Moscow. V. I. Ul'yanov-Lenin State University, Kazan'. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 318–327, May–June, 1990.  相似文献   

10.
Spontaneous quantal and nonquantal acetylcholine release were investigated at an ambient temperature range of 10–35°C in a preparation of white mouse hemidiaphragm. Quantal transmitter release was assessed by the frequency of miniature endplate potentials and nonquantal secretion by the level of H-effect. Spontaneous quantal release rose exponentially in step with increasing temperature. Two relative maxima, one of 20°C and the other of 35°C were noted in the temperature dependence of nonquantal transmitter release. Nonquantal release of acetylcholine did not take place at a temperature of 10°C. The effective energy of activation of quantal release was calculated as 57.0 kJ/mole over the temperature range investigated; that of the nonquantal release process at intervals of 15–20°C and 25–35°C measured 45.5 and 38.2 kJ/mole respectively. It is suggested that an active transport system process rather than simple diffusion of acetylcholine molecules is responsible for nonquantal release of this neurotransmitter.S. V. Kurashov Medical Institute, Kazan'. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 361–367, May–June, 1986.  相似文献   

11.
Synapses with complex nerve terminals consisting of several terminal arbors of a single axon divided by myelin segments were investigated using histological and electrophysiological techniques during experiments on the cutaneous-pectotoralis muscles of different aged frogs. Numbers of synapses with complex nerve terminals were shown to increase during the postnatal developmental process. The relationship between the complexity of nerve terminals, summated length of terminals, and size of muscle fiber is described. Some terminal arborizations at complex nerve terminals originate from nodes of Ranvier; these are marked by low quantal secretion and a distinctive pattern of sodium current decay along the path of the terminals. The causes and mechanisms governing increased complexity of nerve endings in phasic muscles are discussed, together with transmitter release patterns at these endings. It is postulated that growth and myelination processes occur in parallel at the nerve terminal.A. A. Ukhtomskii Physiological Institute, Leningrad State University; S. A. Kurashov Medical Institute, RSFSR Ministry of Health, Kazan'. V. I. Ul'yanov State University, Kazan'. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 99–107, January–February, 1990.  相似文献   

12.
The topography of transmitter release along the motor nerve terminals (NT) was studied on the frogcutaneous pectoris muscle under normal conditions and following denervation. Coordinates of release sites (RS) of transmitter quanta were determined by extracellular recording of postsynaptic signals using three microelectrodes. It was shown that RS form groupings that reflect transmitter release in individual active zones (AZ). The topography of transmitter release in the distal parts of the NT under normal conditions was shown to differ from that observed in the proximal parts. The difference consists in a lower probability of transmitter release in AZ and a higher probability of this process between AZ, as well as in a change of release profile in individual AZ. Similar differences were found following denervation. It is suggested that these properties may reflect plastic reorganization occurring in AZ in the course of remodelling of neuromuscular synapse and its degeneration.Neirofiziologiya/Neurophysiology, Vol. 27, No. 4, pp. 253–260, July–August, 1995.  相似文献   

13.
Summary Evoked release of quanta of neurotransmitter is generally treated as a set of homogeneous, stationary Bernoulli trials, hence governed by the binomial distribution. Relaxing the assumptions of uniformity and stationarity leads to a more realistic physiological model of transmitter release but also introduces systematic biases in the moment estimates of the binomial parameters. We derive probability generating functions for quantal release and expressions for the moment estimates of ¯n and ¯p for a generalized model that incorporates temporal variation and nonuniformity in individual release probabilities and in numbers of release sites.  相似文献   

14.
Miniature end-plate currents (MEPC) were recorded from proximal and distal sections of the frog sartorius and cutaneo-pectoral synapses by means of glass microelectrodes using extracellular techniques. Higher MEPC amplitudes and half-decay times were found in the proximal than the distal sections. These differences disappeared under the effects of tubocurarine and augmented under the action of armine. A significant positive correlation was noted between amplitude and duration of MEPC half decay time in approximately 80% of experiments — an indication of repeated binding between acetylcholine molecules and cholinoreceptors. This correlation was observed in practically all the proximal sites investigated, but only in half of distal sites tested. Findings obtained using electronmicroscopy showed that synaptic contact is about twice as extensive at proximal as at distal sites, while postsynaptic folds are poor in arborization. It is deduced that the high amplitude and longer time course of MEPC at proximal synaptic sites are due to more pronounced repeated binding between acetylcholine molecules and cholinergic receptors of the postsynaptic membrane, which could be put down to the density of the receptor population and geometrical aspects of the synaptic cleft.S. V. Kurashov Medical Institute, Ministry of Public Health of the RSFSR, Kazan'. A. A. Zhdanov State University, Leningrad. Institute of Biophysics, Academy of Sciences of the USSR, Puschino-on-Oka. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 779–788, November–December, 1987.  相似文献   

15.
A neuronal process was identified inLymnaea stagnalis nerve cells which may be viewed as one of the mechanisms underlying the interval selectivity previously described in research into the functional relationships between mammalian brain cells. This process takes the form of regularly-occurring changes in excitability resulting in a high probability (of 0.6–1) of neuronal spike response to what had previously been subthreshold depolarizing current pulses following similar subthreshold (conditioning) pulses at intervals specific to each individual neuron. It was found that the cycle of change in neuronal excitability following threshold depolarization did not arise from temporal summation of electrotonic local or postsynaptic neuronal potentials; it was an endogenous (cytoplasmic) process insensitive to transmitter (acetylcholine) application but altering irreversibly under the effects of bombesin, one of the modulator peptides.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad; Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologya, Vol. 21, No. 3, pp. 291–299, May–June, 1989.  相似文献   

16.
Hump-shaped distortion of motor nerve response, resembling spontaneous or single quanta in amplitude and time course were, observed at a temperature of 20°C, produced by stimulating this nerve during experiments on preparations of frog sartorius and cutaneous pectoral muscle involving focal extracellular recording. Having performed statistical analysis, the possibility could be excluded of this effect representing superposition of spontaneous over-evoked signals and the hypothesis could be put forward that it results from relatively unsynchronized release of separate quanta which go to make up a multiquantal response. This hypothesis would appear to be confirmed by clear-cut correlation between the distribution of synaptic delays in unitary response (when quantal content is low) and those observed in asynchronous response (when quantal content is high). Polymodal type distribution of synaptic delay is shown to be common to both cases. It is deduced that both asynchronous response and the discrete nature of variations in synaptic delay are standard features in the mechanisms of transmitter release.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 346–354, May–June, 1986.  相似文献   

17.
The action of thiamine on neuromuscular transmission in the frog sartorius muscle was investigated. It was found that thiamine at a concentration of 1×10–14 to 1×10–4 M increases transmitter secretion at the nerve endings. This is demonstrated by the increased frequency, amplitude, and quantal content of miniature endplate potentials, and is due to the enhanced likelihood of transmitter release. The role of thiamine in regulating synaptic transmission and the mechanism of its interaction with thiamine-sensitive receptors are examined.A. V. Palladin Institute of Biochemistry, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 794–800, November–December, 1985.  相似文献   

18.
Background and evoked neuronal activity in the cat sensorimotor cortex was recorded under a-chloralose anesthesia. Pairs of heterogeneous stimuli were applied, spaced at intervals of 0, 100, 200, 300, and 400 msec. A clicking sound, flashing light, and electroshock to the contralateral forepaw were used as stimuli. Partial or complete blockade of response to test stimuli presentations spaced 100–200 msec apart were observed when using stimulation of varying modality. The greatest test response was recorded at interstimulus intervals of 200–300 msec. Intracellular mechanisms of heterosensory interaction were investigated by applying the inhibitory transmitter antagonist picrotoxin microiontophoretically to the test cell to produce local attenuation of inhibitory effects. This substance also reduced the duration of blockage following the conditioning stimulus and the occurrence of peak level test response at a lower interstimulus interval than in the controls. Either a consistent increase in the number of spikes per response at one of the interstimulus intervals or a uniform reinforcement in unit response to several different interstimulus intervals were observed in a proportion of the cells. The contribution of intracortical inhibitory influences to the mechanisms of heterosensory interaction on neurons of the cat sensorimotor cortex is discussed in the light of our findings.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 147–156, March–April, 1987.  相似文献   

19.
It was shown during experiments on isolated frog brain (fromRana ridibunda) that response to microelectrophoretically injected glutamate on to various points on the somatodendritic motoneuronal membrane (GLU response) displayed the same properties as EPSP induced in the same motoneuron by activation of three different synaptic inputs. Techniques of transmembrane polarization and current chop by means of a single microelectrode were used in this research. Mean levels of reversal potentials of GLU response and EPSP occurring as a result of stimulating the reticular formation, dorsal root, and microstimulation of presynaptic elements at the point of glutamate application equaled –16.9 ± 1.7 (n=13), –6.8 ± 1.7 (n=13), –9.8 ± 1.8 (n=6), and –15.1 ± 1.4 mV (n=13), respectively. Summation of GLU response and EPSP were quasilinear. Changes (upwards) in conductance associated with GLU response did not exceed 10%. Findings would indicate that glutamate, acting on the postsynaptic membrane receptors, induces depolarization and may serve as transmitter in all three inputs investigated.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 776–785, November–December, 1988.  相似文献   

20.
Inhibitory patterns in monosynaptic components of field potentials and potentials in the dorsal spinal cord surface were investigated during acute experiments on cats involving low-frequency stimulation of cutaneous peripheral nerves. Approximation of experimental data obtained from a theoretical plot was performed adopting a standard model of transmitter storage and release. Parameters of fractional release and replenishment of transmitter depleted from synaptic junctions were determined. Processes of replenishing supplies of transmitter for release were seen to intensify under rhythmic stimulation. A comparison between these experimental findings on the character of synapses of the monosynaptic reflex arc and others found in the literature indicated a similarity between the parameters of the mechanism underlying transmitter mobilization and release at different synaptic junctions formed by primary afferent fibers.Dnepropetrovsk State University Commemorating the 300th Aniversary of Ukraine-Russian Reunion, Dnepropetrovsk. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 491–497, July–August, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号