首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the anaerobic capacities of a temperate grassland soil, a Kansas prairie soil was incubated anaerobically as either soil-water (1:2) suspensions or as soil microcosms at 78% soil water-holding capacity. Prairie soil formed acetate and CO(inf2) as the two main initial carbonaceous products from the anaerobic turnover of endogenous organic matter. Metabolic capacities of soil suspensions and microcosms were similar. Rates of acetate formation from endogenous organic matter in soil-water suspensions incubated at 40, 30, and 15(deg)C approximated 3.3, 2.4, and 1.1 (mu)g of acetate per g (dry weight) of soil per h, respectively. Supplemental H(inf2) and CO(inf2) were subject to consumption with the apparent concomitant synthesis of acetate in both soil suspensions and soil microcosms. In soil microcosms, rates of H(inf2)-dependent acetogenesis at 30 and 55(deg)C were nearly equivalent. The uptake of supplemental H(inf2) was not coupled to methanogenesis under any condition examined. These anaerobic activities were relatively stable when soils were subjected to either aerobic drying or alternating periods of O(inf2) enrichment. On the basis of the formation of nitrogen (N(inf2)), denitrification was engaged during anaerobic incubation periods; nitrous oxide (N(inf2)O) was also formed under certain conditions. Although extended incubation of soil induced the delayed methanogenic turnover of acetate, acetate was subject to immediate turnover under either O(inf2)- or nitrate-enriched conditions. These studies support the following concepts: (i) obligately anaerobic bacteria such as acetogenic bacteria are stable to periods of aerobiosis and are active in the anaerobic microsites of oxic soils, and (ii) acetate synthesized in anaerobic microsites of oxic terrestrial soils constitutes a trophic link to both aerobic and anaerobic microbial communities.  相似文献   

2.
Anaerobic Capacities of Leaf Litter   总被引:1,自引:1,他引:0       下载免费PDF全文
Leaf litter displayed a capacity to spontaneously form organic acids, alcohols, phenolic compounds, H(inf2), and CO(inf2) when incubated anaerobically at 20(deg)C either as buffered suspensions or in a moistened condition in microcosms. Acetate was the predominant organic product formed regardless of the degree of litter decomposition. Initial rates of acetate formation in litter suspensions and microcosms approximated 2.6 and 0.53 (mu)mol of acetate per g (dry weight) of litter per h, respectively. Supplemental H(inf2) was directed towards the apparent acetogenic synthesis of acetate. Acetoclastic methanogenesis was induced by partially decomposed litter after extended lag phases; freshly fallen litter did not display this capacity.  相似文献   

3.
Soil obtained from a beech forest formed significant amounts of acetate when incubated in a bicarbonate-buffered, mineral salt solution under anaerobic conditions at both 5 and 20 degrees C (21 and 38 g of acetate per kg [dry weight] of soil, respectively). At 20 degrees C, following an 18-day lag period, rates of 0.07 mmol of acetate synthesized per g (dry weight) of soil per day were observed. Acetate was not subject to immediate turnover; methane and hydrogen were not formed during the time intervals (5 degrees C, 335 days; 20 degrees C, 95 days) evaluated. The synthesis of acetate from endogenous materials was coincident with acetogenic potentials, i.e., the capacity to catalyze the H(2)-dependent synthesis of acetate. Hydrogen consumption was not directed towards the synthesis of methane. Collectively, these results suggest that acetogenesis may be an underlying microbial activity of this forest soil.  相似文献   

4.
Benzene-amended microcosms prepared with saturated soil or sediment from five hydrocarbon-contaminated sites and one pristine site were monitored for a year and a half to determine the rate of benzene biodegradation under a variety of electron-accepting conditions. Sustainable benzene degradation was observed under specific conditions in microcosms from four of the six sites. Significant differences were observed between sites with respect to lag times before the onset of degradation, rates of degradation, sustainability of the activity, and environmental conditions supporting degradation. Benzene degradation was observed under sulfate-reducing, nitrate-reducing, and iron(III)-reducing conditions, but not under methanogenic conditions. The presence of competing substrates such as toluene, xylenes, and ethylbenzene was found to inhibit anaerobic benzene degradation in microcosms where sulfate or possibly nitrate was the electron acceptor for benzene degradation, but not in microcosms from where iron(III) was the electron acceptor. The presence of organic matter, indicated by a high fraction organic carbon (foc), also appeared to inhibit the biodegradation of benzene; microcosms constructed with soils with the highest foc exhibited the longest lag times before the onset of benzene degradation. The initial extent of hydrocarbon contamination did not appear to correlate with anaerobic benzene-degrading activity.  相似文献   

5.
Soil compaction caused by passage of logging machinery reduces the soil air capacity. Changed abiotic factors might induce a change in the soil microbial community and favour organisms capable of tolerating anoxic conditions. The goals of this study were to resolve differences between soil microbial communities obtained from wheel-tracks (i.e. compacted) and their adjacent undisturbed sites, and to evaluate differences in potential anaerobic microbial activities of these contrasting soils. Soil samples obtained from compacted soil had a greater bulk density and a higher pH than uncompacted soil. Analyses of phospholipid fatty acids demonstrated that the eukaryotic/prokaryotic ratio in compacted soils was lower than that of uncompacted soils, suggesting that fungi were not favoured by the in situ conditions produced by compaction. Indeed, most-probable-number (MPN) estimates of nitrous oxide-producing denitrifiers, acetate- and lactate-utilizing iron and sulfate reducers, and methanogens were higher in compacted than in uncompacted soils obtained from one site that had large differences in bulk density. Compacted soils from this site yielded higher iron-reducing, sulfate-reducing and methanogenic potentials than did uncompacted soils. MPN estimates of H2-utilizing acetogens in compacted and uncompacted soils were similar. These results indicate that compaction of forest soil alters the structure and function of the soil microbial community and favours occurrence of prokaryotes.  相似文献   

6.
 An enrichment culture obtained from anaerobic granular sludge of a bench-scale anaerobic reactor degraded methanol at 65°C via sulfate reduction and acetogenesis. Sulfate reduction was the dominant process (S2-/acetate=2.5). No methane formation was observed. Approximately 30% of the methanol was converted by acetogenic bacteria to acetate, while the remainder was degraded by these bacteria to H2 and CO2 in syntrophy with hydrogen-consuming sulfate-reducing bacteria. Pure cultures of sulfate-reducing and acetogenic bacteria were isolated and characterized. Received: 4 December 1995 / Received revision: 15 April 1996 / Accepted: 22 April 1996  相似文献   

7.
Two dissimilatory nitrate-reducing (Burkholderia xenovorans LB400 and Xanthobacter sp. str. COX) and two denitrifying isolates (Stappia aggregata IAM 12614 and Bradyrhizobium sp. str. CPP), previously characterized as aerobic CO oxidizers, consumed CO at ecologically relevant levels (<100 ppm) under anaerobic conditions in the presence, but not absence, of nitrate. None of the isolates were able to grow anaerobically with CO as a carbon or energy source, however, and nitrate-dependent anaerobic CO oxidation was inhibited by headspace concentrations >100-1000 ppm. Surface soils collected from temperate, subtropical and tropical forests also oxidized CO under anaerobic conditions with no lag. The observed activity was 25-60% less than aerobic CO oxidation rates, and did not appear to depend on nitrate. Chloroform inhibited anaerobic but not aerobic activity, which suggested that acetogenic bacteria may have played a significant role in forest soil anaerobic CO uptake.  相似文献   

8.
Chain elongation is a growth-dependent anaerobic metabolism that combines acetate and ethanol into butyrate, hexanoate, and octanoate. While the model microorganism for chain elongation, Clostridium kluyveri, was isolated from a saturated soil sample in the 1940s, chain elongation has remained unexplored in soil environments. During soil fermentative events, simple carboxylates and alcohols can transiently accumulate up to low mM concentrations, suggesting in situ possibility of microbial chain elongation. Here, we examined the occurrence and microbial ecology of chain elongation in four soil types in microcosms and enrichments amended with chain elongation substrates. All soils showed evidence of chain elongation activity with several days of incubation at high (100 mM) and environmentally relevant (2.5 mM) concentrations of acetate and ethanol. Three soils showed substantial activity in soil microcosms with high substrate concentrations, converting 58% or more of the added carbon as acetate and ethanol to butyrate, butanol, and hexanoate. Semi-batch enrichment yielded hexanoate and octanoate as the most elongated products and microbial communities predominated by C. kluyveri and other Firmicutes genera not known to undergo chain elongation. Collectively, these results strongly suggest a niche for chain elongation in anaerobic soils that should not be overlooked in soil microbial ecology studies.Subject terms: Soil microbiology, Microbial ecology  相似文献   

9.
Anoxic micro zones that occur in soil aggregates of oxic soils may be temporarily extended after rainfall and thus facilitate the anaerobic degradation of organic compounds in soils. The microbial degradation of glucose by anoxic slurries of a forest soil yielded acetate, CO2, H2, succinate, and ethanol, products indicative of mixed acid fermentation. Prokaryotes involved in this process were identified by time-resolved 16S rRNA gene-targeted stable isotope probing with [13C-U]-glucose. All labeled phylotypes from the 13C-enriched 16S rRNA gene were most closely related to Rahnella and Ewingella , enterobacterial genera known to catalyze mixed acid fermentation. These results indicate that facultative aerobes, in particular Enterobacteriaceae , (1) can outcompete obligate anaerobes when conditions become anoxic in forest soils and (2) may be involved in the initial decomposition of monosaccharides in anoxic micro zones of aerated forest soils.  相似文献   

10.
Sulfate-reducing bacteria in rice field soil and on rice roots.   总被引:9,自引:0,他引:9  
Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were related to Desulforhabdus sp. (strain BKA11), Desulfobulbus (R-PropA1), or culstered between Desulfobotulus sapovorans and Desulfosarcina variabilis (R-ButA1 and R-CaprA1).  相似文献   

11.
Grassland management influences soil archaeal communities, which appear to be dominated by nonthermophilic crenarchaeotes. To determine whether methanogenic Archaea associated with the Euryarchaeota lineage are also present in grassland soils, anaerobic microcosms containing both managed (improved) and natural (unimproved) grassland rhizosphere soils were incubated for 28 days to encourage the growth of anaerobic Archaea. The contribution of potential methanogenic organisms to the archaeal community was assessed by the molecular analysis of RNA extracted from soil, using primers targeting all Archaea and Euryarchaeota. Archaeal RT‐PCR products were obtained from all anaerobic microcosms. However, euryarchaeal RT‐PCR products (of putative methanogen origin) were obtained only from anaerobic microcosms of improved soil, their presence coinciding with detectable methane production. Sequence analysis of excised denaturing gradient gel electrophoresis (DGGE) bands revealed the presence of euryarchaeal organisms that could not be detected before anaerobic enrichment. These data indicate that nonmethanogenic Crenarchaeota dominate archaeal communities in grassland soil and suggest that management practices encourage euryarchaeal methanogenic activity.  相似文献   

12.
The relative contributions of abiotic and microbial processes and the role of dissolved species in the reductive dechlorination of carbon tetrachloride (CT) by natural soils and sediments were investigated. Microcosms were constructed using soils or sediments and site water from three locations, and then amended with electron acceptors and/or donors to stimulate the growth of iron- and sulfate-reducing bacteria and to promote the formation of minerals that can react with CT. Before spiking with CT, half the replicate microcosms were sterilized in order to measure the rates of abiotic CT transformation without any direct contribution from microbial dechlorination. Abiotic reaction rates were significantly greater than microbial rates for a range of initial CT concentrations, and for both iron- and sulfate-reducing conditions. In most cases, abiotic reaction rates were indistinguishable from total reaction rates (abiotic plus microbial), indicating a negligible microbial contribution to CT transformation. While in most microcosms the soil/sediment acted as the abiotic reductant, under certain conditions the supernatant was more reactive with CT than was the solid phase. For these conditions, we propose that the reactive species in the supernatant consisted of aqueous natural organic matter that underwent reduction or other transformation by S(-II) generated by sulfate-reducing bacteria.  相似文献   

13.
Dichloromethane (DCM) is utilized by the strictly anaerobic, acetogenic mixed culture DM as a sole source of carbon and energy for growth. Growth with DCM was linear, and cell suspensions of the culture degraded DCM with a specific activity of 0.47 mkat/kg of protein. A mass balance of 2 mol of chloride and 0.42 mol of acetate per mol of DCM was observed. The dehalogenation reaction showed similar specific activities under both anaerobic and aerobic conditions. Radioactivity from [14C]DCM in cell suspensions was recovered largely as 14CO2 (58%), [14C]acetate (23%), and [14C]formate (11%), which subsequently disappeared. This suggested that formate is a major intermediate in the pathway from DCM to acetate. Efforts to isolate from culture DM a pure culture capable of anaerobic growth with DCM were unsuccessful, although overall acetogenesis and the partial reactions are thermodynamically favorable. We then isolated bacterial strains DMA, a strictly anaerobic, gram-positive, endospore-forming rod, and DMB, a strictly anaerobic, gram-negative, endospore-forming homoacetogen, from culture DM. Both strain DMB and Methanospirillum hungatei utilized formate as a source of carbon and energy. Coculture of strain DMA with either M. hungatei or strain DMB in solid medium with DCM as the sole added source of carbon and energy was observed. These data support a tentative scheme for the acetogenic fermentation of DCM involving interspecies formate transfer from strain DMA to the acetogenic bacterium DMB or to the methanogen M. hungatei.  相似文献   

14.
Angel R  Matthies D  Conrad R 《PloS one》2011,6(5):e20453
Methanogenesis is traditionally thought to occur only in highly reduced, anoxic environments. Wetland and rice field soils are well known sources for atmospheric methane, while aerated soils are considered sinks. Although methanogens have been detected in low numbers in some aerated, and even in desert soils, it remains unclear whether they are active under natural oxic conditions, such as in biological soil crusts (BSCs) of arid regions. To answer this question we carried out a factorial experiment using microcosms under simulated natural conditions. The BSC on top of an arid soil was incubated under moist conditions in all possible combinations of flooding and drainage, light and dark, air and nitrogen headspace. In the light, oxygen was produced by photosynthesis. Methane production was detected in all microcosms, but rates were much lower when oxygen was present. In addition, the δ(13)C of the methane differed between the oxic/oxygenic and anoxic microcosms. While under anoxic conditions methane was mainly produced from acetate, it was almost entirely produced from H(2)/CO(2) under oxic/oxygenic conditions. Only two genera of methanogens were identified in the BSC-Methanosarcina and Methanocella; their abundance and activity in transcribing the mcrA gene (coding for methyl-CoM reductase) was higher under anoxic than oxic/oxygenic conditions, respectively. Both methanogens also actively transcribed the oxygen detoxifying gene catalase. Since methanotrophs were not detectable in the BSC, all the methane produced was released into the atmosphere. Our findings point to a formerly unknown participation of desert soils in the global methane cycle.  相似文献   

15.
Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+).  相似文献   

16.
Earthworms (Lumbricus rubellus and Octolasium lacteum) and gut homogenates did not produce CH(inf4), and methanogens were not readily culturable from gut material. In contrast, the numbers of culturable denitrifiers averaged 7 x 10(sup7) and 9 x 10(sup6) per g (dry weight) of gut material for L. rubellus and O. lacteum, respectively; these values were 256- and 35-fold larger than the numbers of culturable denitrifiers in the soil from which the earthworms were obtained. Anaerobically incubated earthworm gut homogenates supplemented with nitrate produced N(inf2)O at rates exceeding that of soil homogenates. Furthermore, living earthworms emitted N(inf2)O under aerobic conditions, and N(inf2)O emission was stimulated by acetylene. For earthworms collected from a mildly acidic (pH 6) beech forest soil, the rates of N(inf2)O emission for earthworms and soil averaged 884 and 2 pmol per h per g (fresh weight), respectively. In contrast, for earthworms collected from a more acidic (pH 4.6) oak-beech forest soil, N(inf2)O emission by earthworms and soil averaged 145 and 45 pmol per h per g (fresh weight), respectively. Based on the extrapolation of this data, earthworms accounted for an estimated 16 and 0.25% of the total N(inf2)O produced at the stand level of these beech and oak-beech forest soils, respectively.  相似文献   

17.
Methyl fluoride (fluoromethane [CH(inf3)F]) has been used as a selective inhibitor of CH(inf4) oxidation by aerobic methanotrophic bacteria in studies of CH(inf4) emission from natural systems. In such studies, CH(inf3)F also diffuses into the anaerobic zones where CH(inf4) is produced. The effects of CH(inf3)F on pure and defined mixed cultures of anaerobic microorganisms were investigated. About 1 kPa of CH(inf3)F, similar to the amounts used in inhibition experiments, inhibited growth of and CH(inf4) production by pure cultures of aceticlastic methanogens (Methanosaeta spp. and Methanosarcina spp.) and by a methanogenic mixed culture of anaerobic microorganisms in which acetate was produced as an intermediate. With greater quantities of CH(inf3)F, hydrogenotrophic methanogens were also inhibited. At a partial pressure of CH(inf3)F of 1 kPa, homoacetogenic, sulfate-reducing, and fermentative bacteria and a methanogenic mixed culture of anaerobic microorganisms based on hydrogen syntrophy were not inhibited. The inhibition by CH(inf3)F of the growth and CH(inf4) production of Methanosarcina mazei growing on acetate was reversible. CH(inf3)F inhibited only acetate utilization by Methanosarcina barkeri, which is able to use acetate and hydrogen simultaneously, when both acetate and hydrogen were present. These findings suggest that the use of CH(inf3)F as a selective inhibitor of aerobic CH(inf4) oxidation in undefined systems must be interpreted with great care. However, by a careful choice of concentrations, CH(inf3)F may be useful for the rapid determination of the role of acetate as a CH(inf4) precursor.  相似文献   

18.
[(sup14)C]naphthalene and phenanthrene were oxidized to (sup14)CO(inf2) without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.  相似文献   

19.
Ring-U-[14C]methoxychlor [1,1-bis(p-methoxyphenyl)-2,2,2-trichloroethane] was incubated in soil under aerobic and anaerobic conditions. Primary degradation of methoxychlor occurred under anaerobic conditions, but not under aerobic conditions, after 3 months of incubation. Analysis of soil extracts, using gas chromatography, demonstrated that only 10% of the compound remained at initial concentrations of 10 and 100 ppm (wt/wt) of methoxychlor. Evidence is presented that a dechlorination reaction was responsible for primary degradation of methoxychlor. Analysis of soils treated with 100 ppm of methoxychlor in the presence of 2% HgCl2 showed that 100% of the compound remained after 3 months, indicating that degradation in the unpoisoned flasks was biologically mediated. Methanogenic organisms, however, are probably not involved, as strong inhibition of methane production was observed in all soils treated with methoxychlor. During the 3-month incubation period, little or no evaluation of 14CO2 or 14CH4 occurred under either aerobic or anaerobic conditions. Cometabolic processes may be responsible for the extensive molecular changes which occurred with methoxychlor because the rate of its disappearance from soil was observed to level off after exhaustion of soil organic matter. After this incubation period, soils previously incubated under anaerobic conditions were converted to aerobic conditions. The rates of 14CO2 evolution from soils exposed to anaerobic and aerobic sequences of environments ranged from 10- to 70-fold greater than that observed for soils exposed solely to an aerobic environment.  相似文献   

20.
Groundwater at an industrial site is contaminated with α hexachlorocyclohexane (HCH) and γ -HCH (i.e., lindane) (0.3 to 0.5 ppm). Other contaminants in the 1 to 15 ppm range include 1,2,4-trichlorobenezene (TCB), 1,2-dichlorobenzene (DCB), 1,3-DCB, 1,4-DCB, chlorobenzene (CB), benzene, trichloroethene (TCE), and cis-1,2-dichloroethene (cDCE). The aquifer consists of a shallow layer of soil over fractured dolomite, where most of the contaminant mass resides. The objective of this study was to compare (1) anaerobic reductive dechlorination of the polychlorinated contaminants, followed by aerobic biodegradation of the daughter products (mainly DCBs, CB, and benzene); and (2) aerobic biodegradation of α - and γ -HCH, TCB, DCBs, CB, and benzene, followed by anaerobic reduction of TCE and cDCE to ethene. Conventional wisdom suggests that sequential anaerobic and aerobic conditions are desirable for bioremediating sites contaminated by mixtures of polychlorinated organics. The results of this microcosm study suggest that a sequential aerobic and anaerobic approach may be more successful, although implementing this in the field presents some major challenges. In the dolomite microcosms incubated under aerobic conditions first (59 days), α - and γ -HCH were biodegraded close to the maximum contaminant level for lindane; all of the aromatic compounds were consumed; and there was partial removal of TCE and cDCE (presumptively via cometabolism). The subsequent switch to anaerobic conditions (day 101) yielded reductive dechlorination of the remaining TCE; a significant level of ethene was produced, although some cDCE and VC persisted. In contrast, sequential anaerobic (393 days) and aerobic treatment (498 days) for the dolomite microcosms was ineffective in completely removing the aromatic compounds, α -HCH, cDCE, and VC. For the soil microcosms, both treatment sequences were effective, most likely reflecting a greater abundance of the necessary microbes and electron donor in this part of the site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号