首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mouse FT210 cell line is a temperature-sensitive cdc2 mutant. FT210 cells are found to arrest specifically in G2 phase and unlike many alleles of cdc2 and cdc28 mutants of yeasts, loss of p34cdc2 at the nonpermissive temperature has no apparent effect on cell cycle progression through the G1 and S phases of the division cycle. FT210 cells and the parent wild-type FM3A cell line each possess at least three distinct histone H1 kinases. H1 kinase activities in chromatography fractions were identified using a synthetic peptide substrate containing the consensus phosphorylation site of histone H1 and the kinase subunit compositions were determined immunochemically with antisera prepared against the "PSTAIR" peptide, the COOH-terminus of mammalian p34cdc2 and the human cyclins A and B1. The results show that p34cdc2 forms two separate complexes with cyclin A and with cyclin B1, both of which exhibit thermal lability at the non-permissive temperature in vitro and in vivo. A third H1 kinase with stable activity at the nonpermissive temperature is comprised of cyclin A and a cdc2-like 34-kD subunit, which is immunoreactive with anti-"PSTAIR" antiserum but is not recognized with antiserum specific for the COOH-terminus of p34cdc2. The cyclin A-associated kinases are active during S and G2 phases and earlier in the division cycle than the p34cdc2-cyclin B1 kinase. We show that mouse cells possess at least two cdc2-related gene products which form cell cycle regulated histone H1 kinases and we propose that the murine homolog of yeast p34cdc/CDC28 is essential only during the G2-to-M transition in FT210 cells.  相似文献   

2.
Previous independent studies suggested that type II cAMP-dependent protein kinase and the p34cdc2 protein kinase cell cycle regulator co-localize at centrosomes. In order to investigate whether there is an association of type II cAMP-dependent protein kinase with p34cdc2 in human fibroblasts, we used three different approaches. First, the regulatory subunits RI and RII were photoaffinity-labeled with 8-N3-[32P]cAMP, and anti-p34cdc2 immunoprecipitates were screened for the presence of either RI or RII regulatory subunits by one- or two-dimensional gel electrophoresis. Second, anti-RII alpha immunoprecipitates were screened for the presence of p34cdc2 by Western blot using three different affinity-purified antibodies recognizing different domains of human p34cdc2. Conversely, anti-p34cdc2 immunoprecipitates (three different antibodies), as well as the material retained on p13suc1-Sepharose Bio-Beads, which binds specifically p34cdc2, were screened for the presence of RII alpha. Finally, we have looked for cAMP-dependent protein kinase activity specifically inhibited by PKI in immunoprecipitates obtained from extracts treated with different anti-p34cdc2 antibodies. All these experiments gave concordant results and demonstrate that at least at G0/G1, human fibroblasts contain a complex of active type II cAMP-dependent protein kinase associated through its RII alpha subunit with p34cdc2.  相似文献   

3.
The human INK4a gene locus encodes two structurally unrelated tumor suppressor proteins, p16(INK4a) and p14(ARF). Although primarily proposed to require a functional p53.Mdm-2 signaling axis, recently p14(ARF) has been implicated in p53-independent cell cycle regulation. Here we show that p14(ARF) preferentially induces a G(2) arrest in tumor cells lacking functional p53 and/or p21. Expression of p14(ARF) impaired mitotic entry and enforced a primarily cytoplasmic localization of p34(cdc2) that was associated with a decrease in p34(cdc2) kinase activity and reduced p34(cdc2) protein expression. A direct physical interaction between p14(ARF) and p34(cdc2) was, nevertheless, ruled out by lack of co-immunoprecipitation. The p14(ARF)-induced depletion of p34(cdc2) was associated with impaired cdc25C phosphatase expression and a prominent shift to inhibitory Tyr-15-phosphorylation in G(2)-arrested cells lacking either p53, p21, or both. Finally, reconstitution of p34(cdc2) using a constitutively active, phosphorylation-deficient p34(cdc2AF) mutant alleviated this p14(ARF)-induced G(2) arrest, thereby allowing cell cycle progression. Taken together, these data indicate that p14(ARF) arrests cells lacking functional p53/p21 in the G(2) phase of the cell cycle by targeting p34(cdc2) kinase. This may represent an important fail-safe mechanism by which p14(ARF) protects p53/p21-deficient cells from unrestrained proliferation.  相似文献   

4.
Summary Immunofluorescence microscopy with a monoclonal antibody raised against the PSTAIR sequence, which corresponds to a peptide conserved in the p 34cdc2 protein kinase throughout the phylogenetic scale including higher plants, was used to study the intracellular localization of p 34cdc2 during the cell cycle in onion root tip cells. Although p 34cdc2 was evenly distributed in the cytoplasm throughout the cell cycle, a more intense staining was observed in the cortical region, where the preprophase band of microtubules (MTs) was located. Double staining with the PSTAIR and plant tubulin antibodies showed that the width of p 34cdc2 band was narrower than that of MT band. These data raise the interesting question regarding the possible role of p 34cdc2 protein kinase in determining the division site in plant cells.  相似文献   

5.
Regulation of p34cdc2 protein kinase during mitosis   总被引:91,自引:0,他引:91  
S Moreno  J Hayles  P Nurse 《Cell》1989,58(2):361-372
The cell-cycle timing of mitosis in fission yeast is determined by the cdc25+ gene product activating the p34cdc2 protein kinase leading to mitotic initiation. Protein kinase activity remains high in metaphase and then declines during anaphase. Activation of the protein kinase also requires the cyclin homolog p56cdc13, which also functions post activation at a later stage of mitosis. The continuing function of p56cdc13 during mitosis is consistent with its high level until the metaphase/anaphase transition. At anaphase the p56cdc13 level falls dramatically just before the decline in p34cdc2 protein kinase activity. The behavior of p56cdc13 is similar to that observed for cyclins in oocytes. p13suc1 interacts closely with p34cdc2; it is required during the process of mitosis and may play a role in the inactivation of the p34cdc2 protein kinase. Therefore, the cdc25+, cdc13+, and suc1+ gene products are important for regulating p34cdc2 protein kinase activity during entry into, progress through, and exit from mitosis.  相似文献   

6.
Activation of p34cdc2 kinase by cyclin A   总被引:17,自引:5,他引:17       下载免费PDF全文
Functional clam cyclin A and B proteins have been produced using a baculovirus expression system. Both cyclin A and B can induce meiosis I and meiosis II in Xenopus in the absence of protein synthesis. Half-maximal induction occurs at 50 nM for cyclin A and 250 nM for cyclin B. Addition of 25 nM cyclin A to activated Xenopus egg extracts arrested in the cell cycle by treatment with RNase or emetine activates cdc2 kinase to the normal metaphase level and stimulates one oscillatory cell cycle. High levels of cyclin A cause marked hyperactivation of cdc2 kinase and a stable arrest at the metaphase point in the cell cycle. Kinetic studies demonstrate the concentration of cyclin A added does not affect the 10 min lag period required for kinase activation or the timing of maximal activity, but does control the rate of deactivation of cdc2 kinase during exit from mitosis. In addition, exogenous clam cyclin A inhibits the degradation of both A- and B-type endogenous Xenopus cyclins. These results define a system for investigating the biochemistry and regulation of cdc2 kinase activation by cyclin A.  相似文献   

7.
8.
The rho proteins, p21rho, are ubiquitously expressed guanine nucleotide binding proteins with approximately 30% amino acid homology to p21ras, but their biochemical function is unknown. We show here that microinjection of constitutively activated recombinant rho protein (Val14rho) into subconfluent cells induces dramatic changes in cell morphology: 15-30 min after injection cells adopt a distinct and novel phenotype with a contracted cell body and finger-like processes still adherent to the substratum. Ribosylation of Val14rho with the ADP-ribosyltransferase C3 from clostridium botulinum, before microinjection, renders the protein biologically inactive, but it has no effect on either its intrinsic biochemical properties or on its interaction with the GTPase activating protein, rho GAP. Micro-injection of ribosylated normal rho, on the other hand, has a similar effect of injection of C3 transferase and induces complete rounding up of cells. We also report striking biochemical changes in actin filament organization when contact-inhibited quiescent 3T3 cells are injected with Val14rho protein. The effects induced by activation or inactivation of p21rho described here, suggest that the biological function of this protein is to control some aspect of cytoskeletal organization.  相似文献   

9.
The protein kinase inhibitor 2-aminopurine induces checkpoint override and mitotic exit in BHK cells which have been arrested in mitosis by inhibitors of microtubule function (Andreassen, P. R., and R. L. Margolis. 1991. J. Cell Sci. 100:299-310). Mitotic exit is monitored by loss of MPM-2 antigen, by the reformation of nuclei, and by the extinction of p34cdc2-dependent H1 kinase activity. 2-AP-induced inactivation of p34cdc2 and mitotic exit depend on the assembly state of microtubules. During mitotic arrest generated by the microtubule assembly inhibitor nocodazole, the rate of mitotic exit induced by 2-AP decreases proportionally with increasing nocodazole concentrations. At nocodazole concentrations of 0.12 microgram/ml or greater, 2-AP induces no apparent exit through 75 min of treatment. In contrast, 2-AP brings about a rapid exit (t1/2 = 20 min) from mitotic arrest by taxol, a drug which causes inappropriate overassembly of microtubules. In control mitotic cells, p34cdc2 localizes to kinetochores, centrosomes, and spindle microtubules. We find that efficient exit from mitosis occurs under conditions where p34cdc2 remains associated with centrosomal microtubules, suggesting it must be present on these microtubules in order to be inactivated. Mitotic slippage, the natural reentry of cells into G1 during prolonged mitotic block, is also microtubule dependent. At high nocodazole concentrations slippage is prevented and mitotic arrest approaches 100%. We conclude that essential components of the machinery for exit from mitosis are present on the mitotic spindle, and that normal mitotic exit thereby may be regulated by the microtubule assembly state.  相似文献   

10.
p34cdc2 acts as a lamin kinase in fission yeast   总被引:10,自引:3,他引:7  
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.  相似文献   

11.
As cells enter mitosis, the protein-tyrosine kinase, p60c-src, is known to be extensively phosphorylated on threonine in its amino-terminal region. In the present work, extracts of mitotic cells were searched for the protein kinase responsible for this phosphorylation. HeLa cells and Xenopus eggs were found to contain a mitosis-specific protein kinase activity capable of phosphorylating highly purified p60c-src in vitro on threonine residues. Tryptic phosphopeptide maps indicate that the mitotic HeLa kinase phosphorylates the same sites in vitro as those used during mitosis in vivo. In addition, this mitotic HeLa kinase comigrates on gel filtration with p34cdc2-associated histone H1 kinase, a well known regulator of mitotic events. Finally, antibodies to the C-terminal peptide of human p34cdc2 specifically deplete p60c-src-phosphorylating activity from mitotic extracts. These results suggest that p60c-src may act as an effector of p34cdc2 in certain mitotic processes.  相似文献   

12.
We previously demonstrated that nontransformed cells arrest in the G1 phase of the cell cycle when treated with low concentrations (21 nM) of staurosporine (1). Both normal and transformed cells are blocked in the G2 phase of the cell cycle when treated with higher concentrations (160 nM) of staurosporine (1,2). In the present study, we show that staurosporine inhibits the activity of fractionated p34cdc2 and p34cdc2-like kinases with IC50 values of 4-5 nM. We propose that the G2 phase arrest in the cell cycle caused by staurosporine is due, at least in part, to the inhibition of the p34cdc2 kinases.  相似文献   

13.
Characterization of synthetic peptide substrates for p34cdc2 protein kinase   总被引:8,自引:0,他引:8  
Synthetic peptide substrates for the cell division cycle regulated protein kinase, p34cdc2, have been developed and characterized. These peptides are based on the sequences of two known substrates of the enzyme, Simian Virus 40 Large T antigen and the human cellular recessive oncogene product, p53. The peptide sequences are H-A-D-A-Q-H-A-T-P-P-K-K-K-R-K-V-E-D-P-K-D-F-OH (T antigen) and H-K-R-A-L-P-N-N-T-S-S-S-P-Q-P-K-K-K-P-L-D-G-E-Y-NH2 (p53), and they have been employed in a rapid assay of phosphorylation in vitro. Both peptides show linear kinetics and an apparent Km of 74 and 120 microM, respectively, for the purified human enzyme. The T antigen peptide is specifically phosphorylated by p34cdc2 and not by seven other protein serine/threonine kinases, chosen because they represent major classes of such enzymes. The peptides have been used in whole cell lysates to detect protein kinase activity, and the cell cycle variation of this activity is comparable to that measured with specific immune and affinity complexes of p34cdc2. In addition, the peptide phosphorylation detected in mitotic cells is depleted by affinity adsorption of p34cdc2 using either antibodies to p34cdc2 or by immobilized p13, a p34cdc2-binding protein. Purification of peptide kinase activity from mitotic HeLa cells yields an enzyme indistinguishable from p34cdc2. These peptides should be useful in the investigation of p34cdc2 protein kinase and their regulation throughout the cell division cycle.  相似文献   

14.
15.
Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates.   总被引:50,自引:19,他引:50       下载免费PDF全文
C Norbury  J Blow    P Nurse 《The EMBO journal》1991,10(11):3321-3329
The p34cdc2 protein kinase is a conserved regulator of the eukaryotic cell cycle. Here we show that residues Thr14 and Tyr15 of mouse p34cdc2 become phosphorylated as mouse fibroblasts proceed through the cell cycle. We have mutated these residues and measured protein kinase activity of the p34cdc2 variants in a Xenopus egg extract. Phosphorylation of residues 14 and 15, which lie within the presumptive ATP-binding region of p34cdc2, normally restrains the protein kinase until it is specifically dephosphorylated and activated at the G2/M transition. Regulation by dephosphorylation of Tyr15 is conserved from fission yeast to mammals, while an extra level of regulation of mammalian p34cdc2 involves Thr14 dephosphorylation. In the absence of phosphorylation on these two residues, the kinase still requires cyclin B protein for its activation. Inhibition of DNA synthesis inhibits activation of wild-type p34cdc2 in the Xenopus system, but a mutant which cannot be phosphorylated at residues 14 and 15 escapes this inhibition, suggesting that these phosphorylation events form part of the pathway linking completion of DNA replication to initiation of mitosis.  相似文献   

16.
The mammalian homologue of the yeast cdc2 gene encodes a 34-kilodalton serine/threonine kinase that is a subunit of M phase-promoting factor. Recent studies have shown that p34cdc2 is also a major tyrosine-phosphorylated protein in HeLa cells and that its phosphotyrosine content is cell cycle regulated and related to its kinase activity. Here, we show that cdc2 is physically associated with and phosphorylated in vitro by a highly specific tyrosine kinase. Tyrosine phosphorylation of cdc2 in vitro occurs at tyrosine 15, the same site that is phosphorylated in vivo. The association between the two kinases takes place in the cytosolic compartment and involves cyclin B-associated cdc2. Evidence is presented that a substantial fraction of cytosolic cdc2 is hypophosphorylated, whereas nuclear cdc2 is hyperphosphorylated. Finally, we show that the tyrosine kinase associated with cdc2 may be a 67-kilodalton protein and is distinct from src, abl, fms, and other previously reported tyrosine kinases.  相似文献   

17.
Renal nephropathy present in male Wistar rats more than 13 months of age was reported as an indication that the rats were in renal failure. In this study, the renal tissue damage at 14 months of age in male Munich Wistar rats was similar to that reported for Wistar rats, indicating that Munich Wistar rats could be another model for study of kidney function in the aging rat. The usual renal response to injury involves increased cell division and/or reparative processes that involve tyrosine kinase activity (TyrK) and/or guanosine triphosphate-binding (G) protein signal trans-duction pathways. This study reveals the presence of renal tissue damage coinciding with significantly reduced activity of Ras, Akt, and p34cdc2 kinase, the signaling proteins that regulate cell division and/or growth, in renal cortical tissues of aging rats compared to young rats (P < 0.005, P < 0.005, and P< 0.001, respectively). These results suggest that proteins involved in signal transduction pathways associated with cell replication are downregulated in the aging kidney cortex at a time when renal cellular damage is also present.  相似文献   

18.
p13suc1 binds to p34cdc2 kinase and is essential for cell cycle progression in eukaryotic cells. The crystal structure of S.pombe p13suc1 has been solved to 2.7 A resolution using data collected at the ESRF source, Grenoble, from both native crystals and crystals of a seleno-methionine derivative. The starting point for structure solution was the determination of the six selenium sites by direct methods. The structure is dominated by a four-stranded beta-sheet, with four further alpha-helical regions. p13suc1 crystallizes as a dimer in the asymmetric unit stabilized by the binding of two zinc ions. A third zinc site stabilizes the higher-order crystal packing. The sites are consistent with a requirement for zinc during crystal growth. A likely site for p13suc1-protein interaction is immediately evident on one face of the p13suc1 surface. This region comprises a group of conserved, exposed aromatic and hydrophobic residues below a flexible negatively charged loop. A conserved positively charged area would also present a notable surface feature in the monomer, but is buried at the dimer interface. p13suc1 is larger than its recently solved human homologue p9CKS2, with the extra polypeptide forming a helical N-terminal extension and a surface loop between alpha-helices 3 and 4. Notably, p13suc1 does not show the unusual beta-strand exchange that creates an intimate p9CKS2 dimer. p13suc1 cannot oligomerize to form a stable hexamer as has been proposed for p9CKS2.  相似文献   

19.
The activity of p34cdc2 kinase is regulated in the phases of vertebrate cell cycle by mechanisms of phosphorylation and dephosphorylation. In this paper, we demonstrate that casein kinase II (CKII) phosphorylates p34cdc2 in vivo and in vitro at Ser39 during the G1 phase of HeLa cell division cycle. Human p34cdc2 shows a typical phosphorylation sequence motif site for CKII at Ser39 (ES39EEE). In our experiments, either p34cdc2 expressed and purified from bacteria or p34cdc2 immunoprecipitated from HeLa cells enriched in G1 by elutriation were substrates for in vitro phosphorylation by CKII. Phosphoamino acid analysis, N-chlorosuccinimide mapping, and two-dimensional tryptic mapping of p34cdc2 phosphorylated in vitro were performed to determine the phosphorylation site. A synthetic peptide spanning residues 33-50 of human p34cdc2, including the CKII site, was used to map the site. In addition, phosphorylation at Ser39 also occurs in vivo, since p34cdc2 is phosphorylated during G1 on serine, and its two-dimensional tryptic map shows two phosphopeptides that comigrate exactly with the synthetic peptides used as standard.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号