首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1α-Hydroxyvitamin D-3 25-hydroxylase activity was measured in subcellular fractions of rat and human liver. The formation of 1,25-dihydroxyvitamin D-3 was determined by high pressure liquid chromatography. In rat liver 1α-hydroxyvitamin D-3 25-hydroxylase activities were found in the purified nuclei, the heavy mitochondrial fraction and the microsomal fraction. The enrichment of 25-hydroxylase activity was highest in the heavy mitochondrial fraction. With this fraction a minimum amount (about 0.5 mg) of protein was required before formation of 1,25-dihydroxyvitamin D-3 could be detected. Above this amount the reaction was linear with amount of protein up to at least 2 mg/ml. The reaction was also linear with time up to 60 min. An apparent Km value of 2·10?5 M was found. The mitochondrial 25-hydroxylase was stimulated by addition of cytosolic protein or bovine serum albumin. The degree of stimulation was dependent on the amount of mitochondrial protein present in the incubation mixture. Maximal stimulation was seen with 0.2 mg/ml of either protein in the presence of 0.5 mg mitochondrial protein. The stimulating effect remained after heating the protein for 5 min at 100°C. The cytosolic protein did not stimulate a reconstituted mitochondrial 1α-hydroxyvitamin D-3 25-hydroxylase. The mitochondrial vitamin D-3 25-hydroxylase was inhibited both by cytosolic protein and by bovine serum albumin. Human liver revealed only one 1α-hydroxyvitamin D-3 25-hydroxylase activity located to the heavy mitochondrial fraction. The results are in agreement with previous studies on the localization of vitamin D-3 25-hydroxylase in rat and human liver. The difference in localization of the 25-hydroxylase between rat and human liver implies that studies on the regulation of the microsomal 25-hydroxylase in rat liver may not be relevant to the situation in human liver.  相似文献   

2.
3.
The metabolism of 1α-hydroxyvitamin D3 (1α-OH-D3) was studied in rat liver perfused with [3H]-1α-OH-D3. [3H]-1α-OH-D3 was converted very rapidly to a more polar metabolite, which was identified as 1α,25-dihydroxy-vitamin D3 [1α,25-(OH)2-D3] by co-chromatography with synthetic 1α,25-(OH)2-D3 as well as by gas chromatography-mass spectrometry. [3H]-1α,25-(OH)2-D3 appeared in the perfusate as early as 20 min after addition of [3H]-1α-OH-D3, and its level in the perfusate increased linearly for at least 120 min. These data strongly indicate that 1α-OH-D3 is metabolized to 1α,25-(OH)2-D3, which exerts biological effects on bone and intestine.  相似文献   

4.
Using isotope dilution—mass fragmentography as assay technique, it was shown that highly purified preparations of cytochrome P-450 from rat liver microsomes catalyzed 25-hydroxylation of vitamin D3 when combined with NADPH-cytochrome P-450 reductase and a phospholipid. The rate of conversion was approximately linear with the amount of cytochrome P-450, and was considerably higher than the rate of conversion obtained with crude liver microsomes. The possibility is discussed that the microsomal fraction contains inhibitors of 25-hydroxylase activity, which may be of regulatory importance in vitamin D3 metabolism.  相似文献   

5.
The biological activity of 1α-hydroxyvitamin D3 has been determined in vitamin D-deficient rats. In the accumulation of mineral in bone and cartilage, maintenance of serum calcium, and in efficiency of calcium absorption the 1α-hydroxyvitamin D3 was approximately two to five times more active than vitamin D3 or 80–200 units of activity per microgram.  相似文献   

6.
7.
Two human hepatoma cell lines, Hep G2 and Hep 3B, were screened for vitamin D3-25-hydroxylase enzyme activity by incubation with radioactive vitamin D3. A compound co-chromatographing with 25-OH-D3 was synthesized in both cell lines but its rate of synthesis was tenfold greater in Hep 3B than in Hep G2 cells. The identity of the compound was confirmed by comparing its chromatographic properties with authentic 25-OH-D3 on three different high pressure liquid chromatography systems. Its production was suppressed by adding fetal calf serum (10%), lipoprotein-deficient fetal calf serum, or pure vitamin D-binding globulin to the medium. The mechanism of action of these plasma proteins appears to involve retardation of uptake of the substrate. These two cell lines offer considerable potential as defined in vitro models for studying the effects of physiological factors on the 25-hydroxylation of vitamin D3.  相似文献   

8.
A cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 was purified from liver mitochondria of untreated rabbits. The enzyme fraction contained 9 nmol of cytochrome P-450/mg of protein and showed only one protein band with an apparent Mr of 52,000 upon SDS/polyacrylamide-gel electrophoresis. The preparation showed a single protein spot with an apparent isoelectric point of 7.8 and an Mr of approx. 52,000 upon two-dimensional isoelectric-focusing-polyacrylamide-gel electrophoresis. The purified cytochrome P-450 catalysed 25-hydroxylation of vitamin D3 up to 5000 times more efficiently than did the mitochondria. The cytochrome P-450 required both ferredoxin and ferredoxin reductase for catalytic activity. Microsomal NADPH-cytochrome P-450 reductase could not replace ferredoxin and ferredoxin reductase. The cytochrome P-450 catalysed, in addition to 25-hydroxylation of vitamin D3, the 25-hydroxylation of 1 alpha-hydroxyvitamin D3 and the 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. The enzyme did not catalyse side-chain cleavage of cholesterol, 11 beta-hydroxylation of deoxycorticosterone, 1 alpha-hydroxylation of 25-hydroxyvitamin D3, hydroxylations of lauric acid and testosterone or demethylation of benzphetamine. The results raise the possibility that the 25-hydroxylation of vitamin D3 and the 26-hydroxylation of C27 steroids are catalysed by the same species of cytochrome P-450 in liver mitochondria. The possible role of the liver mitochondrial cytochrome P-450 in the metabolism of vitamin D3 is discussed.  相似文献   

9.
D-3-Aminoisobutyrate-pyruvate aminotransferase (EC 2.6.1.40) was purified 1900-fold from rat liver extract. The purified enzyme showed a molecular mass of 180 kDa by gel-permeation HPLC analysis using a TSK gel G3000SW column. Reductive polyacrylamide gel electrophoresis in sodium dodecyl sulfate resulted in identification of a single band of approx. 50 kDa, indicating that the native enzyme is probably a tetrametric protein. The specific activity of the purified enzyme was 1.14 mumol/min per mg protein. D-3-Aminoisobutyrate and beta-alanine were good amino donors. The Km value for L-3-aminoisobutyrate was 100-times larger than that for the D-isomer. The apparent Km values for D-3-aminoisobutyrate and beta-alanine were 35 and 282 microM, respectively. Pyruvate, glyoxylate, oxalacetate, 2-oxo-n-valerate, and 2-oxo-n-butyrate were good amino acceptors. The apparent Km values for pyruvate and glyoxylate were 32 and 44 microM, respectively.  相似文献   

10.
J Sasaki  A Mikami  K Mizoue    S Omura 《Applied microbiology》1991,57(10):2841-2846
To enzymatically synthesize vitamin D derivatives, we screened about 300 Streptomyces sp. strains. Streptomyces sclerotialus FERM BP-1370 and Streptomyces roseoporus FERM BP-1574 were found to have the ability to convert 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, respectively, to 1 alpha, 25-dihydroxyvitamin D3. The average rates of 1 alpha hydroxylation of 25-hydroxyvitamin D3 were 6.9 micrograms liter-1 min-1 with FERM BP-1370 and 7.0 micrograms liter-1 min-1 with FERM BP-1574. The specific cytochrome P-450 inhibitors carbon monoxide, SKF-525-A, and metyrapone inhibited the hydroxylation of 1 alpha- and 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by FERM BP-1370 and FERM BP-1574. The cytochromes P-450 of these strains were detected by reduced CO difference spectra in the whole-cell suspensions. The appearance of cytochrome P-450 suggests that the cytochromes P-450 of FERM BP-1370 and FERM BP-1574 carry out the hydroxylation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3.  相似文献   

11.
To enzymatically synthesize vitamin D derivatives, we screened about 300 Streptomyces sp. strains. Streptomyces sclerotialus FERM BP-1370 and Streptomyces roseoporus FERM BP-1574 were found to have the ability to convert 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, respectively, to 1 alpha, 25-dihydroxyvitamin D3. The average rates of 1 alpha hydroxylation of 25-hydroxyvitamin D3 were 6.9 micrograms liter-1 min-1 with FERM BP-1370 and 7.0 micrograms liter-1 min-1 with FERM BP-1574. The specific cytochrome P-450 inhibitors carbon monoxide, SKF-525-A, and metyrapone inhibited the hydroxylation of 1 alpha- and 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by FERM BP-1370 and FERM BP-1574. The cytochromes P-450 of these strains were detected by reduced CO difference spectra in the whole-cell suspensions. The appearance of cytochrome P-450 suggests that the cytochromes P-450 of FERM BP-1370 and FERM BP-1574 carry out the hydroxylation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3.  相似文献   

12.
A pathway has been described in the skin for the synthesis of 24-dehydrovitamin D3 (delta 24D3) from 24-dehydroprovitamin D3. The physiologic function of delta 24D3 is unknown, but has been proposed as a potential inhibitor of hepatic vitamin D-25-hydroxylase. We validated an assay for vitamin D-25-hydroxylase in rat hepatic microsomes, using nanomolar amounts of [3H]D3 as substrate, and found that delta 24D3 competitively inhibits vitamin D-25-hydroxylase activity. The apparent Ki was approximately 17 nM, indistinguishable from the Km of approximately 15 nM, suggesting that both delta 24D3 and cholecalciferol have similar affinity for the enzyme. We found no [3H]delta 24D3 in serum or liver extracts after repletion of vitamin D-depleted rats with [3H]vitamin D3 for 4 h or 6 days. A dose of 1 microgram delta 24D3 to vitamin D- and calcium-depleted rats was unable to promote any elevation in the 45Ca transport by everted duodenal sacs or to increase levels of plasma calcium: thus no evidence for biological conversion of delta 24D3 to vitamin D3 was observed. Further studies are needed to determine whether delta 24D3 is released from the skin to the circulation and is taken up by the liver, before physiological relevance can be attributed to this inhibitor.  相似文献   

13.
An LD50 of 0.2 mg/kg body wt has been determined for 1 alpha-hydroxyvitamin D3 in the rat. In comparison, the LD50 for 1 alpha-hydroxyvitamin D2 is between 3.5 and 6.5 mg/kg. In terms of chronic toxicity, 1 alpha-hydroxyvitamin D3 at a dose of 5 micrograms/kg/day causes death of one-half the animals in a 4-week period. On the other hand, 20 micrograms/kg/day of 1 alpha-hydroxyvitamin D2 is required to induce similar toxicity. The body weight record and renal calcium accumulation during chronic treatment support the above conclusion. It therefore appears that 1 alpha-hydroxyvitamin D2 is between 5 and 15 times less toxic than 1 alpha-hydroxyvitamin D3. This surprising result prompted a reexamination of the relative biological activity of 1 alpha-hydroxyvitamin D2 and 1 alpha-hydroxyvitamin D3. Both compounds are equally potent in the stimulation of intestinal calcium transport, bone calcium mobilization, in the elevation of serum phosphorus, and in the healing of rickets in the rat. The reason for lower toxicity of 1 alpha-hydroxyvitamin D2 is unknown. The results suggest that 1 alpha-hydroxyvitamin D2 might represent a therapeutically superior compound.  相似文献   

14.
Basolateral plasma membrane vesicles of rat small intestinal epithelium accumulate calcium through an ATP-dependent pumping system. The activity of this system is highest in duodenum and decreases towards the ileum. This distribution along the intestinal tract is similar as the active calcium absorption capacity of intact intestinal epithelial segments. ATP-dependent calcium uptake in basolateral membrane vesicles from duodenum and ileum increased significantly after repletion of young vitamin D-3-deficient rats with 1 alpha,25-dihydroxy-vitamin D-3. Ca2+ -ATPase activity in duodenal basolateral membranes increased to the same extend as ATP-dependent calcium transport, but (Na+ + K+)-ATPase activity remained unaltered.  相似文献   

15.
Synthesis and biological activity of 1alpha-hydroxyvitamin D3   总被引:1,自引:0,他引:1  
Hydroboration of cholesta-1,5-diene-3β-ol followed by alkaline-peroxide oxidation resulted in the formation of 1α- and 2α-hydroxy derivatives of cholesterol in nearly equal amounts. 1α-Hydroxycholesterol was then transformed to 1α-hydroxyvitamin D3, via 1α-hydroxycholest-5,7-diene-3β-ol. 1α-Hydroxyvitamin D3 was as active as 25-hydroxyvitamin D3 in the stimulation of intestinal calcium transport and bone mineral mobilization in intact rats, and moreover was able to produce both response in anephric rats similar to 1α,25-dihydroxyvitamin D3, the active metabolite of vitamin D3, as reported originally by DeLuca's group.  相似文献   

16.
The 26-hydroxylation of 1alpha,25-dihydroxyvitamin D3 in rats in vitro and in vivo was studied under physiological conditions. Incubation of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 with rat kidney or rat liver homogenate showed formation of a metabolite that was identified as 1alpha,25(S),26-trihydroxy-[26,27-3H]vitamin D3 by comigration on three different HPLC systems and a periodate cleavage reaction. This metabolite was not generated by hydroxylation of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 itself but by an enzymatic conversion of a precursor that was formed nonenzymatically in substantial amounts upon storage of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 in ethanol at -20 degrees C under argon for more than three weeks. An in vivo metabolism study in rats dosed with a physiological dose of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 confirmed the absence of 26-hydroxylation of the hormone. As expected at 6 h postinjection of purified 1alpha,25-dihydroxy-[26,27-3H]vitamin D3, 1alpha,24(R),25-trihydroxy-[26,27-3H]vitamin D3, as well as traces of (23S,25R)-1alpha,25-dihydroxy-[3H]vitamin D3-lactone were detected and identified on straight phase and reverse phase HPLC in serum, kidney, and liver.  相似文献   

17.
18.
19.
While current dogma argues that vitamin D prodrugs require side-chain activation by liver enzymes, recent data suggest that hydroxylation may also occur extrahepatically. We used keratinocytes and recombinant human enzyme to test if the 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) is capable of target cell activation and inactivation of a model prodrug, 1alpha-hydroxyvitamin D2 (1alpha(OH)D2) in vitro. Mammalian cells stably transfected with CYP24A1 (V79-CYP24A1) converted 1alpha(OH)D2 to a series of metabolites similar to those observed in murine keratinocytes and the human cell line HPK1A-ras, confirming the central role of CYP24A1 in metabolism. Products of 1alpha(OH)D2 included the active metabolites 1alpha,24-dihydroxyvitamin D2 (1alpha,24(OH)2D2) and 1alpha,25-dihydroxyvitamin D2 (1alpha,25(OH)2D2); the formation of both indicating the existence of distinct activation pathways. A novel water-soluble metabolite, identified as 26-carboxy-1alpha,24(OH)2D2, was the presumed terminal degradation product of 1alpha(OH)D2 synthesized by CYP24A1 via successive 24-hydroxylation, 26-hydroxylation and further oxidation at C-26. This acid was absent in keratinocytes from Cyp24a1 null mice. Slower clearance rates of 1alpha(OH)D2 and 1alpha,24(OH)2D2 relative to 1alpha,25(OH)2D2 and 1alpha,25(OH)2D3 were noted, arguing for a role of 24-hydroxylated metabolites in the altered biological activity profile of 1alpha(OH)D2. Our findings suggest that CYP24A1 can activate and inactivate vitamin D prodrugs in skin and other target cells in vitro, offering the potential for treatment of hyperproliferative disorders such as psoriasis by topical administration of these prodrugs.  相似文献   

20.
Chicks convert both orally and intravenously administered 1alpha-hydroxy[6-3H]vitamin D3 rapidly to 1alpha,25-dihydroxy[6-3H]vitamin D3. The maximal accumulation of 1alpha,25-dihydroxy[6-3H]vitamin D3 in intestine precedes the intestinal absorption response to 1alpha-hydroxyvitamin D3 by at least 2 hours. Oral administration results in the highest concentrations of 1alpha,25-dihydroxy[6-3H]vitamin D3 in intestine, giving a level about 1.5 times that achieved with an intravenous dose. On the other hand, an oral dose of 1alpha-hydroxy[6-3H]vitaminD3 gives much lower amounts of both 1alpha-hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 in bone and blood than an intravenous dose, which suggests that the 1alpha-hydroxy[6-3H]vitamin D3 may not be utilized as well by the oral route as by an intravenous route. Liver homogenates from both rat and chick convert 1alpha-hydroxy[6-3H]vitamin D3 to 1alpha,25-dihydroxy[6-3H]vitamin D3. However, intestinal homogenates from chick, but not rat, can also cary out this conversion, which may account for the higher concentration of 1alpha,25-dihydroxy[6-3H]vitamin D3 found in the intestine of chicks given an oral dose of 1alpha-hydroxy[6-3H]vitamin D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号