首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human neutrophils produce various compounds of the 5-lipoxygenase pathway, including (5S)-hydroxyeicosatetraenoic acid, leukotriene B4, its 6-trans isomers and omega-oxidation metabolites of LTB4, when the cells are stimulated with the Ca2+ ionophore A23187. The elevation in the extracellular pH (pHo) facilitated the cytoplasmic alkalinization induced by the ionophore as determined fluorometrically using 2',7'-bis(carboxyethyl)carboxyfluorescein and enhanced the production of all the 5-lipoxygenase metabolites. The production decreased when the alkalinization was blocked by the decrease in the pHo, the removal of the extracellular Na+ or the addition of specific inhibitors of the Na+/H+ exchange, such as 5-(NN-hexamethylene)amiloride, 5-(N-methyl-N-isobutyl)amiloride and 5-(N-ethyl-N-isopropyl)amiloride. The alkalinization of the cytoplasm with methylamine completely restored the production suppressed by the removal of Na+ from the medium. These findings suggest that the change in the cytoplasmic pH (pHi) mediated by the Na+/H+ exchange regulates the production of the lipoxygenase metabolites. The site of the metabolism controlled by the pHi change seemed to be the 5-lipoxygenase, because the production of all the metabolites decreased in parallel and the release of [3H]arachidonic acid from the neutrophils in response to the ionophore was not affected by the pHi change. Furthermore, the production of the 5-lipoxygenase metabolites stimulated by A23187 with or without exogenous arachidonic acid showed a similar pHo-dependence and the production induced by N-formylmethionyl-leucylphenylalanine (chemotactic peptide) with exogenous arachidonic acid also decreased when the cytoplasmic alkalinization was inhibited.  相似文献   

2.
Na+/H+ exchange activity has been examined in endothelial cells isolated from porcine brain capillaries. Intracellular pH (pHi) changes were monitored using a confocal laser scanning microscope and the pH-sensitive fluorescence indicator 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). Acid load of the brain capillary endothelial cells was performed with a NH4Cl (20 mM) prepulse. In bicarbonate-free solutions pHi recovered within 3 to 10 min. Removal of extracellular Na+ ions demonstrated that H+ extrusion after an acid load of the cells was Na+ dependent. The Na+/H+ exchange could be completely blocked by EIPA (5-(N-ethyl-N-isopropyl)amiloride) as well as by the novel inhibitor 3-methylsulfonyl-4-piperidinobenzoyl guanidine hydrochloride (HOE 694) in concentrations of 1 to 10 microM, respectively. EIPA and HOE 694 in a concentration of 0.1 microM caused a partial block of Na+/H+ exchange.  相似文献   

3.
Na+/H+ exchanger (NHE) activity is exquisitely dependent on the intra- and extracellular concentrations of Na+ and H+. In addition, Cl- ions have been suggested to modulate NHE activity, but little is known about the underlying mechanism, and the Cl- sensitivity of the individual isoforms has not been established. To explore their Cl- sensitivity, types 1, 2, and 3 Na+/H+ exchangers (NHE1, NHE2, and NHE3) were heterologously expressed in antiport-deficient cells. Bilateral replacement of Cl- with nitrate or thiocyanate inhibited the activity of all isoforms. Cl- depletion did not affect cell volume or the cellular ATP content, which could have indirectly altered NHE activity. The number of plasmalemmal exchangers was unaffected by Cl- removal, implying that inhibition was due to a decrease in the intrinsic activity of individual exchangers. Analysis of truncated mutants of NHE1 revealed that the anion sensitivity resides, at least in part, in the COOH-terminal domain of the exchanger. Moreover, readdition of Cl- into the extracellular medium failed to restore normal transport, suggesting that intracellular Cl- is critical for activity. Thus interaction of intracellular Cl- with the COOH terminus of NHE1 or with an associated protein is essential for optimal activity.  相似文献   

4.
Summary Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05±0.01,n=5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 M amiloride or removal of extracellular Na+ (Na o + /H i + and Na i + /H o + exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na o + /H i + exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a set point of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.  相似文献   

5.
Prior treatment with pertussis toxin of G0-arrested hamster fibroblasts (CCL39) results in a dose-dependent inhibition of two early events of the mitogenic response elicited by alpha-thrombin: accumulation of inositol phosphates in Li+-treated cells, and activation of the Na+/H+ antiport, measured either by the amiloride-sensitive 22Na+ influx or by the increase in intracellular pH. At 10(-1) U/ml of alpha-thrombin, the maximal inhibition was approximately 50% for these two early cellular responses, but the pertussis toxin effect was more pronounced at lower thrombin concentrations. In contrast, pertussis toxin does not affect the Na+/H+ antiport activation induced by phorbol esters or EGF, the action of which is not mediated by the phosphoinositide-metabolizing pathway in CCL39 cells. Therefore, our data suggest the following. A GTP-binding regulatory protein is probably involved in signal transduction between thrombin receptors and the phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. This regulation does not seem to be exerted via modulations of cyclic AMP levels. The thrombin-induced activation of Na+/H+ antiport is, at least in part, mediated by the protein kinase C, as a consequence of stimulation of phosphatidylinositol turnover.  相似文献   

6.
The present studies were designed to examine the regulation of Na+/H+ exchange activity by epidermal growth factor (EGF) in an in vitro system. Na+/H+ exchange activity was determined in brush-border membranes isolated from rat jejunal enterocytes incubated with epidermal growth factor and a number of second messengers. EGF at physiological concentrations stimulated Na+/H+ exchange activity without affecting vesicle size. The stimulation of Na+/H+ activity was the result of increasing Vmax of Na+/H+ (6.0 +/- 0.4 compared with 3.3 +/- 0.27 nmol/mg protein/5 sec, P < 0.01). Km values of the Na+/H+ exchanger in brush-border membrane from cells stimulated with EGF and controls were similar (16.0 +/- 3.0 vs 13.0 +/- 3.0, respectively). Na+/H+ activity was inhibited by phorbol esters, calmodulin, and cyclic AMP. The effects of EGF, calmodulin, cyclic AMP, and phorbol esters were dependent on ATP, because depleting the cells from ATP masked the effects on Na+/H+ exchange activity. The results suggest that EGF stimulates Na+/H+ exchange activity in the enterocytes. This stimulation is most likely not via activation of the phosphatidylinositol pathway.  相似文献   

7.
We have reexamined the possible role of the Na+/H+ antiport in the cellular response by PC12 pheochromocytoma cells to nerve growth factor (NGF). In contrast to previous reports, we observe no activation of Na+/H+ exchange in these cells, using a very sensitive assay based on the measurement of cytoplasmic pH with dimethylfluorescein dextran (Rothenberg et al., J. Biol. Chem., 258:4883-4809, 1983). Our measurements indicate that the PC12 pheochromocytoma cells, under all conditions tested, show a high rate of Na+/H+ exchange. The discrepancy between these observations and previous experiments could be due to differences in cells in different laboratories, but also to changes in cell adhesion induced by NGF. We describe conditions where intracellular pH and rates of Na+ uptake can be measured reliably in PC12 cells with adequate controls for cell adhesion. We conclude that activation of Na+/H+ exchange is neither sufficient nor required for the differentiation of PC12 cells induced by NGF.  相似文献   

8.
Endothelin stimulates Na+/H+ exchange in vascular smooth muscle cells   总被引:2,自引:0,他引:2  
The effect of endothelin (ET) on the intracellular pH (pHi) of vascular smooth muscle cells (VSMC), was investigated using a fluorescent pH indicator 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF). ET at concentrations of over 10(-9) M caused dose-dependent transient acidification followed by Na(+)-dependent and amiloride-sensitive alkalization of the cells due to stimulation of Na+/H+ exchange. The alkalization induced by ET was Ca2(+)-dependent and was inhibited by a calcium channel blocker, nicardipine. Pretreatment with H-7, an inhibitor of protein kinase C, also inhibited the ET-induced cell alkalization. These results indicate that ET stimulates Na+/H+ exchange, resulting in alkalization of VSMC and that this ET-induced cell-alkalization is probably linked to Ca2+ influx and activation of protein kinase C.  相似文献   

9.
Stimulation of human endothelial cells (EC) by thrombin elicits a rapid increase of intracellular free Ca2+ [(Ca2+]i), platelet-activating factor (PAF) production and 1-O-alkyl-2-lyso-sn-glycero-3- phosphocholine (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) activity. The treatment of EC with thrombin leads to a 90% decrease in the cytosolic protein kinase C (PKC) activity; this dramatic decline is accompanied by an increase of the enzymatic activity in the particulate fraction. The role of PKC in thrombin-mediated PAF synthesis has been assessed: (1) by the blockade of PKC activity with partially selective inhibitors (palmitoyl-carnitine, sphingosine and H-7); (2) by chronic exposure of EC to phorbol 12-myristate 13-acetate (PMA), which results in down-regulation of PKC. In both cases, a strong inhibition of thrombin-induced PAF production is observed, suggesting obligatory requirement of PKC activity for PAF synthesis. It is suggested that PKC regulates EC phospholipase A2 (PLA2) activity as thrombin-induced arachidonic acid (AA) release is 90% inhibited in PKC-depleted cells. Brief exposure of EC to PMA strongly inhibits thrombin-induced [Ca2+]i rise, acetyltransferase activation and PAF production, suggesting that, in addition to the positive forward action, PKC provides a negative feedback control over membrane signalling pathways involved in the thrombin effect on EC. Forskolin and iloprost, two agents that increase the level of cellular cAMP in EC, are very effective in inhibiting thrombin-evoked cytosolic Ca2+ rise, acetyltransferase activation and PAF production; this suggests that endogenously generated prostacyclin (PGI2) may modulate the synthesis of PAF in human endothelial cells.  相似文献   

10.
Summary The present studies were designed to test our previous suggestion that Na+/H+ exchange was activated by muscarinic stimulation of rat parotid acinar cells. Consistent with this hypothesis, we demonstrate here that intact rat parotid acini stimulated with the muscarinic agonist carbachol in HCO 3 -free medium show an enhanced recovery from an acute acid load as compared to similarly challenged untreated preparations. Amiloride-sensitive22Na uptake, due to Na+/H+ exchange, was also studied in plasma membrane vesicles prepared from rat parotid acini pretreated with carbachol. This uptake was stimulated twofold relative to that observed in vesicles from control (untreated) acini. This stimulation was time dependent, requiring 15 min of acinar incubation with carbachol to reach completion, and ws blocked by the presence of the muscarinic antagonist atropine (2×10–5 m) in the pretreatment medium. The effect of carbachol was dose dependent withK 0.53×10–6 m. Stimulation of the exchanger was also seen in vesicles prepared from acini pretreated with the -adrenergic agonist epinephrine, but not with the -adrenergic agonist isoproterenol, or with substance P. Kinetic analysis indicated that the stimulation induced by carbachol was due to an alkaline shift in the pH responsiveness of the exchanger in addition to an increasedapparent transport capacity. Taken together with previous results from this and other laboratories, these results strongly suggest that the Na+/H+ exchanger and its regulation are intimately involved in the fluidsecretory response of the rat parotid.  相似文献   

11.
Using thepH-sensitive dye2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF),we examined the effect of hyperosmolar solutions, which presumablycaused cell shrinkage, on intracellular pH(pHi) regulation in mesangialcells (single cells or populations) cultured from the rat kidney. Thecalibration of BCECF is identical in shrunken and unshrunken mesangialcells if the extracellular K+concentration ([K+])is adjusted to match the predicted intracellular[K+]. ForpHi values between ~6.7 and~7.4, the intrinsic buffering power in shrunken cells (600 mosmol/kgH2O) is threefold larger than in unshrunken cells (~300mosmol/kgH2O). In the nominalabsence ofCO2/HCO3,exposing cell populations to a HEPES-buffered solution supplementedwith ~300 mM mannitol (600 mosmol/kgH2O) causes steady-statepHi to increase by ~0.4. The pHi increase is due to activationofNa+/H+exchange because, in single cells, it is blocked in the absence ofexternal Na+ or in the presence of50 µM ethylisopropylamiloride (EIPA). Preincubating cells in aCl-free solution for atleast 14 min inhibits the shrinkage-induced pHi increase by 80%. Wecalculated the pHi dependence oftheNa+/H+exchange rate in cell populations under normosmolar and hyperosmolar conditions by summing 1) thepHi dependence of the totalacid-extrusion rate and 2) thepHi dependence of theEIPA-insensitive acid-loading rate. Shrinkage alkali shifts thepHi dependence ofNa+/H+exchange by ~0.7 pH units.  相似文献   

12.
Binding of ADP to platelets enhances the binding of fibrinogen to Gp IIb-IIIa, the specific platelet receptor for adhesive proteins. The linkage between ADP and fibrinogen binding is indirect since ADP does not bind to the same receptor as fibrinogen. We have recently proposed that a third component, once affected by ADP binding, induces a conformational transition of the fibrinogen receptor from the low to the high affinity state, which is responsible for platelet aggregation [De Cristofaro, R., Landolfi, R., Castagnola, M., De Candia, E., Di Cera, E., & Wyman, J. (1988) Proc. Natl. Acad. Sci. USA 85, 8473-8476]. In the present study we provide evidence that this component should be identified with the platelet Na+/H+ antiport. Inhibition of the antiport by pharmacological agents such as amiloride, or else by decreasing extracellular Na+, results in a marked decrease of fibrinogen binding to platelets.  相似文献   

13.
The effects of thyrotropin-releasing hormone (TRH) and 12-O-tetradecanoylphorbol 13-acetate (TPA) on cytosolic pH (pHi) were studied on GH4C1 pituitary cells loaded with the fluorescent pH indicator bis(carboxyethyl)carboxyfluorescein (BCECF) and the fluorescent Ca2+ indicator quin2. TRH, which was minimally effective at around 10(-9) M, and TPA, 100 nM, produced very small elevations in pHi of about 0.05 pH units from the normal basal resting pHi of GH4C1 cells of around 7.05. The effects were more marked after acid-loading the cells using 1 micrograms of nigericin/ml. Preincubation with amiloride or replacing the extracellular Na+ with choline+ completely blocked the elevations stimulated by TRH or TPA, consistent with an activation of the Na+/H+ antiport mechanism. The effects were completely independent of the cytoplasmic free calcium concentration ([Ca2+]i). The calcium ionophore ionomycin produced an elevation in [Ca2+]i with no concomitant effect on pHi, and amiloride, although completely inhibiting the pH change stimulated by TRH, failed to affect the initial stimulated [Ca2+]i transient. Although the data are consistent with an elevation in pHi by TRH which is caused by stimulation of a protein kinase C and subsequent activation of the antiporter, the rapidity of the onset of the pHi response to TRH could not be mimicked by a combination of TPA and ionomycin. These results, together with previous findings which show that secretion can be mimicked by TPA and ionomycin, suggest that TRH-stimulated Na+/H+ exchange plays no part in the acute stimulation of secretion, but that TRH increases the pH-sensitivity of the antiport system during increased synthesis of prolactin and growth hormone.  相似文献   

14.
15.
Remantadine has been shown to induce a decrease in acidification rate of incubation medium by chick embryo fibroblasts, caused both by Na+/H+ exchange and diffusion of lactic acid, the final product of glycolysis. The degree of acidification rate decrease grew with increasing concentration and time of cell incubation with preparation. Possible implementation of the inhibitory effect of remantadine on acid-dependent process of influenza virus uncoating by decreasing cellular Na+/H+ exchange and glycolysis is discussed.  相似文献   

16.
17.
Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

18.
Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

19.
The cytoplasmic pH (pHi) of human blood neutrophils was measured using trapped carboxyfluorescein derivatives. Cells were acid-loaded using propionate or by pretreatment with NH4+. Acid-loaded cells were found to regain near-normal pHi by means of a Na+-dependent process. A concomitant Na+ uptake was recorded as a change in cell volume. Both events were amiloride-sensitive, indicating involvement of a Na+/H+ antiport. Activation of Na+/H+ exchange was also observed with chemotactic factors. Studies of the pHi-dependence of the H+ extrusion rate indicate that chemotactic factors increase the [H+i] sensitivity of the antiport.  相似文献   

20.
Na+/H+ exchange in mitochondria as monitored by BCECF fluorescence   总被引:2,自引:0,他引:2  
A Kapus  E Ligeti  A Fonyó 《FEBS letters》1989,251(1-2):49-52
The recently developed method of loading isolated heart mitochondria with the fluorescent pH indicator, BCECF, was applied to monitor the Na+o/H+i exchange process from the matrix side of the membrane. The Na+-induced changes in the pH of the matrix (pHm) showed that: (i) the Na+o/H+i exchange followed Michaelis-Menten kinetics with respect to external Na+ with a Km of approx. 20 mM; (ii) in contrast to this, the dependence of the exchange rate on the matrix [H+] did not obey the Michaelian model. No Na+-induced alkalinization occurred above a pHm of 7.45 +/- 0.09 (n = 4). Below this value the reciprocal of the transport rate and that of the matrix [H+] deviated upwardly from the straight line. The results suggest that internal H+ might exert allosteric control on the mitochondrial Na+/H+ exchange process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号