首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM.

Scope of review

The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed. Particular attention is given to vascular disease, but other diseases where versican is important are covered as well, most notably different forms of cancers. Attention is given to mechanisms(s) by which versican influences cell behaviors through either direct or indirect processes. Versican produced by either stromal cells or myeloid cells can have a major impact influencing immunity and inflammation. Finally, studies controlling versican accumulation that either delay or inhibit the progression of disease will be highlighted.

Major conclusions

Versican is one component of the ECM that can influence the ability of cells to proliferate, migrate, adhere, and remodel the ECM. Targeting versican as a way to control cell phenotype offers a novel approach in the treatment of disease.

Significance

ECM molecules such as versican contribute to the structural integrity of tissues and interact with cells through direct and indirect means to regulate, in part, cellular events that form the basis of disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

2.
Versican: a versatile extracellular matrix proteoglycan in cell biology   总被引:21,自引:0,他引:21  
Versican is a large extracellular matrix proteoglycan that is present in a variety of tissues. Successful cloning of the gene in man, mouse, cow and chicken has revealed the existence of at least four splice variants of versican, which differ in the size of the core protein and the number of glycosaminoglycan chains. The highly interactive nature of versican provides a basis for its importance as a structural molecule, creating loose and hydrated matrices during key events in development and disease; and by interacting either directly with cells or indirectly with molecules that associate with cells to, in part, regulate cell adhesion and survival, cell proliferation, cell migration and extracellular matrix assembly. Several studies within the past two years have confirmed a significant role for versican in regulating cell phenotype.  相似文献   

3.
Extracellular matrix (ECM) remodeling is achieved by both production and degradation of ECM molecules during bone development. ADAMTS (a disintegrin and metalloprotease with thrombospondin type 1 motifs) constitutes a family of extracellular proteases which are implicated in cleaving the protein versican. The present study was designed to investigate the expression of versican and ADAMTS1, 4, and 5 mRNA during bone development in rat mandibles and hind limbs by RT-PCR and in situ hybridization. Versican was localized by immunohistochemistry. The process of bone development from day 14 postcoitum through week 6 postnatum was divided into the beginning of osteogenesis, woven bone, and lamellar bone stages. Versican protein was abundant in the woven bone matrix, but decreased in the lamellar bone matrix. Versican mRNA was prominent in some osteoblasts with corresponding localization of the cognate protein. The temporal and spatial mRNA expression pattern of ADAMTS1, 4, and 5 was comparable to that of versican. These results suggest that woven bone rich in versican alters into lamellar bone containing little versican during bone development in both mandibles and hind limbs, where some osteoblasts may be involved in production as well as degradation of versican by secreting ADAMTS1, 4, and 5.  相似文献   

4.
Versican is a large (1-2 x 10(6) Da) chondroitin-sulfate proteoglycan that can form large aggregates by means of interaction with hyaluronan and also binds to a series of other extracellular matrix proteins, chemokines and cell-surface molecules. Versican is a multifunctional molecule with roles in cell adhesion, matrix assembly, cell migration and proliferation. Characterization of the binding interactions mediated by the various domains of versican is a first step towards understanding the functions of versican and interacting molecules in the extracellular matrix. In this study we investigated a recombinant construct corresponding to the C-type lectin domain of versican and demonstrated a calcium-dependent self-association of this region by blot overlay and plasmon surface resonance assays. Electron microscopy provided further evidence of the relevance of the binding reaction by demonstrating a mixture of monomers, dimers and complex aggregates of recombinant versican C-type lectin domain. This binding reaction could contribute to the ability of versican to organize formation of the proteoglycan extracellular matrix by inducing binding of individual versican molecules or by modulating binding reactions to other matrix components.  相似文献   

5.
The interaction of versican with its binding partners   总被引:8,自引:0,他引:8  
Wu YJ  La Pierre DP  Wu J  Yee AJ  Yang BB 《Cell research》2005,15(7):483-494
Versican belongs to the family of the large aggregating chondroitin sulfate proteoglycans located primarily within the extracellular matrix (ECM). Versican, like other members of its family, has unique N- and C-terminal globular regions, each with multiple motifs. A large glycosaminoglycan-binding region lies between them. This review will begin by outlining these structures, in the context of ECM proteoglycans. The diverse binding partners afforded to versican by virtue of its modular design will then be examined. These include ECM components, such as hyaluronan, type Ⅰ collagen, tenascin-R, fibulin-1, and -2, fibrillin-1, fibronectin, P- and L-selectins, and chemokines. Versican also binds to the cell surface proteins CD44, integrin β1, epidermal growth factor receptor, and P-selectin glycoprotein ligand-1. These multiple interactors play important roles in cell behaviour, and the roles of versican in modulating such processes are discussed.  相似文献   

6.
Embryonic development is an exceptionally dynamic process, requiring a provisional extracellular matrix that is amenable to rapid remodeling, and proteolytic or non-proteolytic mechanisms that can remodel the major components of this matrix. Versican is a chondroitin-sulfate proteoglycan that forms highly hydrated complexes with hyaluronan and is widely distributed in the provisional matrix of mammalian embryos. It has been extensively studied in the context of cardiovascular morphogenesis, neural crest cell migration and skeletal development. Analysis of Vcan transgenic mice has established the requirement for versican in cardiac development and its role in skeletogenesis. The ADAMTS family includes several versican-degrading proteases that are active during remodeling of the embryonic provisional matrix, especially during sculpting of versican-rich tissues. Versican is cleaved at specific peptide bonds by ADAMTS proteases, and the cleavage products are detectable by neo-epitope antibodies. Myocardial compaction, closure of the secondary palate (in which neural crest derived cells participate), endocardial cushion remodeling, myogenesis and interdigital web regression are developmental contexts in which ADAMTS-mediated versican proteolysis has been identified as a crucial requirement. ADAMTS proteases are expressed coordinately and function cooperatively in many of these contexts. In addition to versican clearance, ADAMTS proteases generate a bioactive versican fragment containing the N-terminal G1 domain, which we have named versikine. This review promotes the view that the embryonic extracellular matrix has evolved not only to provide a permissive environment for embryo growth and morphogenesis, but through its dissolution to influence and regulate cellular processes.  相似文献   

7.
Leiomyosarcoma (LMS) is a mesenchymal cancer that occurs throughout the body. Although LMS is easily recognized histopathologically, the cause of the disease remains unknown. Versican, an extracellular matrix proteoglycan, increases in LMS. Microarray analyses of 80 LMSs and 24 leiomyomas showed a significant elevated expression of versican in human LMS versus benign leiomyomas. To explore the importance of versican in this smooth muscle cell tumor, we used versican-directed siRNA to knock down versican expression in a LMS human cell line, SK-LMS-1. Decreased versican expression was accompanied by slower rates of LMS cell proliferation and migration, increased adhesion, and decreased accumulation of the extracellular matrix macromolecule hyaluronan. Addition of purified versican to cells expressing versican siRNA restored cell proliferation to the level of LMS controls, increased the pericellular coat and the retention of hyaluronan, and decreased cell adhesion in a dose-dependent manner. The presence of versican was not only synergistic with hyaluronan in increasing cell proliferation, but the depletion of versican decreased hyaluronan synthase expression and decreased the retention of hyaluronan. When LMS cells stably expressing versican siRNA were injected into nude mice, the resulting tumors displayed significantly less versican and hyaluronan staining, had lower volumes, and had reduced levels of mitosis as compared with controls. Collectively, these results suggest a role for using versican as a point of control in the management and treatment of LMS.  相似文献   

8.
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.  相似文献   

9.
Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan in the extracellular matrix, and is expressed at high levels in tissues during development and remodeling in pathological conditions. Its core protein is cleaved at a region close to the N-terminal end of CSβ domain by several members of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, i.e., ADAMTS-1, 4, 5, 9, 15, and 20. Here, using a CRISPR/Cas9 system, we generated knock-in mice (V1R), which express an ADAMTS cleavage-resistant versican. Some V1R homozygote mice, termed R/R, exhibit syndactyly and organ hemorrhage. In wound healing experiments, R/R wound shows accumulation of versican and activated TGFβ-signaling in the early stage, leading to faster healing than wild type wound. Immunostaining for Ki67, CD31, smooth muscle α-actin, periostin demonstrates higher levels of overall cell proliferation and an increased number of endothelial cells and myofibroblasts. Immunostaining for CD11b and qRT-PCR for macrophage markers revealed increased levels of inflammatory cell infiltration, especially those of M1 macrophages. Cultured R/R dermal fibroblasts revealed increased deposition of versican, type I and III collagens, and hyaluronan, and upregulation of Smad2/3 signaling. Taken together, these results demonstrate that the cleavage site determines versican turnover and that versican plays a central role in the provisional matrix during the wound repair.  相似文献   

10.
Versican, a proteoglycan recently implicated in hair follicle induction, has been shown to influence axon outgrowth in vitro and in vivo. We used immunohistochemistry to study the relationship between versican expression and innervation, during rat vibrissa follicle development and the adult hair cycle. During development, nerve fibres were commonly associated with areas of weak versican expression, and the path of axons appeared to be delineated by sharp boundaries of versican expression. Versican expression changed in the lower follicle dermis during the adult hair follicle cycle but remained strong around the follicle neck reflecting the constant innervation. Our observations show a correlation between versican expression and peripheral innervation indicating that versican may have a dual role in hair follicle biology.  相似文献   

11.
Versican, a large chondroitin sulfate proteoglycan, plays a role in conditions such as wound healing and tissue remodelling. To test the hypothesis that versican expression is transiently upregulated and plays a role in the infarcted heart, we examined its expression in a rat model of myocardial infarction. Northern blot analysis demonstrated increased expression of versican mRNA. Quantitative real-time RT-PCR analysis revealed that versican mRNA began to increase as early as 6 h and reached its maximal level 2 days after coronary artery ligation. Versican mRNA then gradually decreased, while the mRNA of decorin, another small proteoglycan, increased thereafter. Versican mRNA was localized in monocytes, as indicated by CD68-positive staining, around the infarct tissue. The induction of versican mRNA was accelerated by ischemia/reperfusion (I/R), which was characterized by massive cell infiltration and enhanced inflammatory response. To examine the alteration of versican expression in monocytes/macrophages, we isolated human peripheral blood mononuclear cells and stimulated them with granulocyte/macrophage colony-stimulating factor (GM-CSF). Stimulation of mononuclear cells with GM-CSF increased the expression of versican mRNA as well as cytokine induction. The production of versican by monocytes in the infarct area represents a novel finding of the expression of an extracellular matrix gene by monocytes in the infarcted heart. We suggest that upregulation of versican in the infarcted myocardium may have a role in the inflammatory reaction, which mediates subsequent chemotaxis in the infarcted heart. (Mol Cell Biochem xxx: 47–56, 2005)  相似文献   

12.
Versican is a proteoglycan expressed in the extracellular matrix, where it regulates a variety of cell activities and affects tumor development. With alternative splicing, there are four versican isoforms, denoted V0, V1, V2 and V3. The V2 isoform is highly expressed in the mature brain but its function in the mature brain has not yet been elucidated. Since brain tumors are among the most angiogenic of human tumors, we investigated whether or not the V2 isoform plays a role in angiogenesis and found that the glioblastoma cell line U87 stably transfected with V2 formed tumors containing extensive vasculature. Although the V2-expressing cells grew slowly, they survived well in serum-free medium. They also displayed high adhesive ability to endothelial cells and facilitated tube-like structure formation. Importantly, fibronectin was up-regulated by V2 and mediated V2 function. Thus, versican V2 could be a potential target for intervention of brain tumor angiogenesis.  相似文献   

13.
14.
15.
Versican, a ubiquitous component of the extracellular matrix (ECM), accumulates both in tumor stroma and cancer cells and is highly regulated by various cytokines. The aberrant expression of versican and its isoforms is known to modulate cell proliferation, differentiation, and migration, all of which are features of the invasion and metastasis of cancer; versican is also known to favour the homeostasis of the ECM. Interleukin-11 (IL-11) is an important cytokine that exhibits a wide variety of biological effects in gastric cancer development. Here, we analysed the expression of versican isoforms and found that the major isoforms expressed by both gastric carcinoma tissue and gastric cell lines were V0 and V1, and V1 was significantly higher in gastric carcinoma tissue. The treatment of the gastric cell lines AGS and MKN45 with rhIL-11 resulted in a significant increase in the expression of V0 and V1. Exogenous IL-11 increased migration in AGS and MKN45 cells, whereas these effects were reversed when the expression of V0 and V1 were abolished by siRNA targeting versican V0/V1. Collectively, these findings suggest that the abnormally expressed versican and its isoforms participate, at least in part, in the progress of gastric carcinoma triggered by IL-11.  相似文献   

16.
Versican is a large chondroitin sulfate proteoglycan and belongs to the family of lecticans. Versican possesses two globular domains, G1 and G3 domain, separated by a CS-attachment region. The CS-attachment region present in the middle region is divided into two spliced domains named CSalpha and beta. Alternative splicing of versican generates at least four versican isoforms named V0, V1, V2, and V3. We have successfully cloned the full-length cDNA of chick versican isoforms V1 and V2 and found that versican isoform V1 induced mesenchymal-epithelial transition in NIH3T3 cells. Mesenchymal-epithelial transition induced by V1 in NIH3T3 cells is characterized by expression of E-cadherin and occludin, two epithelial markers, and reduced expression of fibroblastic marker vimentin (Sheng et al., 2006, Mol Biol Cell. 17, 2009-2020). In the present studies, we found that versican V1 isoform not only induced cell transition, but also increased intercellular communication via gap junction channels composed of connexin proteins. Our results showed that V1 induces plasma membrane localization of connexin 43, resulting in increased cell communication. This was further confirmed by blocking assays. Gap junctions mediated the transfer of small cytoplasmic molecules and the diffusion of second messenger molecules between adjacent cells. The ability of versican in regulating gap junction implied a potential role of versican in coordinating functions.  相似文献   

17.
The ability of lymphocytes to migrate freely through connective tissues is vital to efficient immune function. How the extracellular matrix (ECM) may affect T-cell adhesion and migration is not well understood. We have examined the adhesion and migration of activated human T-lymphocytes on ECM made by fibroblast-like synoviocytes and lung fibroblasts. These cells were minimally interactive until treated with a viral mimetic, Poly I:C. This treatment promoted myofibroblast formation and engendered a higher-order structured ECM, rich in versican and hyaluronan, to which T-cells avidly adhered in a hyaluronidase-sensitive manner. This Poly I:C-induced matrix impeded T-cell spreading and migration on and through synoviocyte monolayers, while hyaluronidase treatment or adding versican antibody during matrix formation reversed the effect on T-cell migration. Hyaluronidase also reversed the spread myofibroblast morphology. These data suggest that the viscous hyaluronan- and versican-rich matrix binds and constrains T-lymphocytes. Using purified matrix components and solid state matrices of defined composition, we uncovered a role for versican in modulating hyaluronan-T-cell interactions. Versican prevented T-cell binding to soluble hyaluronan, as well as the amoeboid shape change on hyaluronan-coated dishes and T-cell penetration of collagen gels. Together, these data suggest that hyaluronan and versican play a role in T-cell trafficking and function in inflamed tissues.  相似文献   

18.
19.
The major proteoglycans from L6J1 rat myoblast culture were identified. The proteoglycans were isolated from different constituents of cell culture: culture medium, extracellular matrix (ECM), and myoblasts. To identify their core proteins, the proteoglycans were treated with enzymes specifically digesting chondroitin/dermatan sulfates or chondroitin sulfates. Subsequent electrophoresis and mass spectrometry revealed versican, collagen XII, and inter-α-trypsin inhibitor classified as chondroitin sulfate proteoglycans and biglycan known to be chondroitin/dermatan sulfate proteoglycan. Versican was identified in ECM and the other proteoglycans in the culture medium. Such difference in localization is likely to be a consequence of different biological functions. Versican, collagen XII, and biglycan are synthesized by myoblasts and inter-α-trypsin inhibitor originates from fetal bovine serum (a culture medium component).  相似文献   

20.
Versican, a large chondroitin sulphate proteoglycan and hyaluronan (HA), a non-sulphated glycosaminoglycan are major constituents of the pericellular matrix. In many neoplastic tissues, changes in the expression of versican and HA affect tumour progression. Here, we analyse the synthesis of versican and hyaluronan by fibrosarcoma cells, and document how the latter is affected by PDGF-BB, bFGF and TGFB2, growth factors endogenously produced by these cells. Fibrosarcoma cell lines B6FS and HT1080 were utilised and compared with normal lung fibroblasts (DLF). The major versican isoforms expressed by DLF and B6FS cells were V0 and V1. Treatment of B6FS cells with TGFB2 showed a significant increase of V0 and V1 mRNAs. Versican expression in HT1080 cells was not significantly affected by any of the growth factors. In addition, TGFB2 treatment increased versican protein in DLF cells. HA, showed approximately a 2-fold and a 9-fold higher production in DLF cells compared to B6FS and HT1080 cells, respectively. In HT1080 cells, HA biosynthesis was significantly increased by bFGF, whereas, in B6FS cells it was increased by TGFB2 and PDGF-BB. Furthermore, analysis of HA synthases (HAS) expression indicated that HT1080 expressed similar levels of all three HAS isoforms in the following order: HAS2> HAS3> HAS1. bFGF shifted that balance by increasing the abundance of HAS1. The major HAS isoform expressed by B6FS cells was HAS2. PDGF-BB and TGFB2 showed the most prominent effects by increasing both HAS2 and HAS1 isoforms. In conclusion, these growth factors modulated, through upregulation of specific HAS isoforms, HA synthesis, secretion and net deposition to the pericellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号