首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse monoclonal antibody was elicited with 4-nitroquinoline 1-oxide (4NQO) modified poly(dG-dC).poly(dG-dC) and was characterized using enzyme-linked immunosorbent assay and radioimmunoassay. The antibody reacted specifically for 4NQO-poly(dG-dC).poly(dG-dC) but not for 4NQO modified DNA and synthetic polynucleotides such as poly(dG).poly(dC). The antibody crossreacted slightly with brominated or N-acetoxy-2-acetylaminofluorene modified poly(dG-dC).poly(dG-dC) known to adopt Z-conformation. The antibody may recognize unique conformational change in poly(dG-dC).poly(dG-dC) modified by 4NQO. The antibody should be useful for the detection of conformational change in DNA induced by chemical carcinogens.  相似文献   

2.
Poly(dG-dC).poly(dG-dC) was modified by the reaction with 4-hydroxyaminoquinoline 1-oxide (4HAQO) in the presence of seryl-AMP. The conformations of 4HAQO-modified poly(dG-dC).poly(dG-dC) and of poly(dG-dC).poly(dG-dC) were studied by circular dichroism spectra under various salt concentration conditions. 4HAQO residues to guanine bases are inefficient in inducing the transition of poly(dG-dC).poly(dG-dC) from B-form to Z-form conformation. We have elicited monoclonal antibodies against 4HAQO-poly(dG-dC).poly(dG-dC). They were characterized using enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and binding to supercoiled DNA. These antibodies reacted with 4HAQO-poly(dG-dC).poly(dG-dC) specifically but not with 4HAQO-modified DNA or poly(dG).poly(dC). However, they cross-reacted with N-acetoxy-2-acetylaminofluorene-modified poly(dG-dC).poly(dG-dC) in Z-form conformation. These monoclonal antibodies may recognize a unique conformation in poly(dG-dC).poly(dG-dC) after 4HAQO modification.  相似文献   

3.
Modification of DNA by the carcinogen N-acetoxy-N-2-acetylaminofluorene gives two adducts, a major one at the C-8 position of guanine and a minor one at the N-2 position with differing conformations. Binding at the C-8 position results in a large distortion of the DNA helix referred to as the “base displacement model” with the carcinogen inserted into the DNA helix and the guanosine displaced to the outside. The result is increased susceptibility to nuclease S, digestion due to the presence of large, single-stranded regions in the modified DNA. In contrast, the N-2 adduct results in much less distortion of the helix and is less susceptible to nuclease S1 digestion. A third and predominant adduct is formed in vivo, the deacetylated C-8 guanine adduct. The conformation of this adduct has been investigated using the dimer dApdG as a model for DNA. The attachment of aminofluorene (AF) residues introduced smaller changes in the circular dichroism (CD) spectra of dApdG than binding of acetylaminofluorene (AAF) residues. Similarly, binding of AF residues caused lower upfield shifts for the H-2 and H-8 protons of adenine than the AAF residues. These results suggest that AF residues are less stacked with neighboring bases than AAF and induce less distortion in conformation of the modified regions than AAF. An alternative conformation of AAF-modified deoxyguanosine has been suggested based on studies of poly(dG-dC)·poly(dG-dC). Modification of this copolymer with AAF to an extent of 28% showed a CD spectrum that had the characteristics of the left-handed Z conformation seen in unmodified poly-(dG-dC)·poly(dG-dC) at high ethanol or salt concentrations. Poly(dG)·poly(dC), which docs not undergo the B to Z transition at high ethanol concentrations, did not show this type of conformational change with high AAF modification. Differences in conformation were suggested by single-strand specific nuclease S1 digestion and reactivity with anticytidine antibodies. Highly modified poly(dG-dC)·poly(dG-dC) was almost completely resistant to nuclease S1 hydrolysis, while, modified DNA and poly(dG)·poly(dC) are highly susceptible to digestion. Two possible conformations for deoxyguanosine modified at the C-8 position by AAF are compared depending on whether its position is in alternating purine-pyrimidine sequences or random sequence DNA.  相似文献   

4.
Poly(dG-dC).poly(dG-dC) has been modified by reaction with 4-acetoxyaminoquinoline 1-oxide (Ac-4 HAQO), the ultimate carcinogen of 4-nitroquinoline 1-oxide. The circular dichroism (CD) spectra of the modified and unmodified polymers have been compared under various experimental conditions. The CD spectra were recorded in 1 mM phosphate, 50% (v/v) ethanol, 3.8 M LiCl and 95% (v/v) ethanol, conditions in which poly(dG-dC).poly(dG-dC) adopts the B-, Z-, C- and A-form respectively. In 1 mM phosphate buffer, poly(dG-dC).poly(dG-dC) modified by Ac-4 HAQO seems not to contain regions in the Z-form. Z-form induction could be progressively obtained by the addition of ethanol as follows: in the buffer with about 30% ethanol the modified polymer started to adopt the Z structure, while 40% of ethanol in the buffer was necessary for the unmodified polymer. In the 50% ethanol-1 mM phosphate buffer mixture (v/v), poly(dG-dC).poly(dG-dC) was entirely in the Z-form while poly(dG-dC).poly(dG-dC) modified by Ac-4 HAQO remained partially in the B-form. Enzymatic digestions with the nuclease S1 which is specific of the single-stranded DNA were carried out in order to support the modified poly(dG-dC).poly(dG-dC) CD study conclusions. The role played by the two major adducts on the conformational characteristics of modified polymer is discussed.  相似文献   

5.
4-Acetoxyaminoquinoline (Ac-4-HAQ) (1) was identified as a hydrolysis product of 1-acetoxy-4-acetoxyimino-1,4-dihydroquinoline (diAc-4-HAQO). The reaction allowing the obtention of (1) obeys to a reduction mechanism implying the N1-O cleavage. The carcinogenic properties of (1) observed by Sato et al. (Japan J. Exp. Med., 40 (1970) 475) in mice were studied in rats with the in vivo system we used previously with 4-nitroquinoline-1-oxide (4-NQO) and 4-hydroxyaminoquinoline-1-oxide (4-HAQO). In rats (1) does not covalently bind DNA. It was, therefore, possible to propose an interpretation of the results obtained by Enomoto et al. (Proc. Soc. Exp. Biol. Med., 136 (1971) 1206) who injected diAc-4-HAQO s.c. to mice and rats. Compound 1 could be responsible for the carcinogenic effects observed through the following pathway: (1) should be formed by hydrolysis of diAc-4-HAQO and reactivated by an enzymatic system to N-oxide derivative, the 4-acetoxyaminoquinoline-1-oxide (Ac-4-HAQO), which constitutes an ultimate carcinogen model of 4-NQO.  相似文献   

6.
The conformation of poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), and calf thymus DNA modified with N-acetoxy-N-2-acetylaminofluorene (N-acetoxy-AAF) was examined by extent of reaction with anti cytidine antibodies. In contrast to modified poly(dG).poly(dC0 and DNA, modified poly(dG-dC).poly (dG-dC) failed to react with the antibodies indicating that the base pairing in this polymer is intact. This in consistent with induction of the Z-DNA conformation in AAF modified poly(dG-dC).poly(dG-dC). Using minimized potential energy calculations on the dCpdG-AAF dimer as a model for the modified polymer, it is shown that the proposed Z-DNA conformation is energetically stable. A model is proposed for an AAF modified tetramer, dGpdCpdGpdC, in which the AAF is external to the Z-DNA duplex.  相似文献   

7.
The sensitivity of S1 nuclease to cis- and trans-(NH3)2PtCl2 modified DNAs is examined as a function of the level of cis- and trans-(NH3)2PtCl2 bound, the % (G+C) content in DNA from different sources and the sequence dependence in poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC). The extent of DNA digested increases with increasing levels of either isomer and is inversely influenced by the % (G+C) content of the DNA. However, the difference in the extent of digestion between the cis-and trans-(NH3)2PtCl2 modified DNAs at equivalent levels of bound isomer follows the order, calf-thymus greater than M. lysodeikticus greater than poly(dG-dC).poly(dG-dC). While there is virtually no difference in the digestion profiles for poly(dG-dC).poly(dG-dC) modified with the two isomers, there is a striking difference in the extent of digestion between cis- and trans-(NH3)2PtCl2 modified poly(dG).poly(dC). These results are discussed in light of the possible modes of binding for cis-(NH3)2PtCl2, previously reported findings on modified DNA and possible implications for modifications in cellular chromatin.  相似文献   

8.
We have determined the 1H----3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT).poly(dA-dT), poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT) as well as homopolynucleotides poly(dA).poly(dT) and poly(dG).poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4-6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25 degrees C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E. coli DNA. dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution. Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT).poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating "wrinkled" DNA model. The conformations of poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT), according to the exchange data obtained are within the B form. For homopolynucleotides in 0.15 M NaCl, the KA value for poly(dA).poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG).poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B = A conformation equilibrium for poly(dG).poly(dC) in solution. The increase of NaCl concentration to 3 M results in a B----Z transition in the case of poly(dG-dC).poly(dG-dC) and in the shift of B = A equilibrium towards the A-form in the case of poly(dG).poly(dC) as is evidenced by alterations of their KG values. Poly(dA-dT).poly(dA-dT) in 6 M CsF and poly(dA-dC).poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the "X-type" CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA).poly(dT) in 6 M CsF corresponds to the "heteronomous" DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.  相似文献   

9.
KB cells and L cells were treated with methylmethanesulfonate (MMS) or 4-nitroquinoline-1-oxide (4 NQO) and the resulting damage to DNA and its repair were examined by sedimentation in an alkaline sucrose gradient. The sedimentation profiles obtained were found to be the resultant of a complex interrelationship between drug dosage, duration of the lysis period and the repair capacity of the cells. A systematic study of these variables was made which led to a plausible and useful interpretation of the sedimentation profiles. Both drugs produce two kinds of DNA modifications which show up as a single-strand breaks but affect the sedimentation profile in characteristic ways. One of these modifications which is quite alkali-labile can be studied using a 30-min lysis period. The other modification is less alkali-labile and can be studied using a long lysis period. Both KB cells and L cells can repair the former type of damage but only KB cells can repair the latter type of damage.  相似文献   

10.
Quantitative analysis of DNA-porphyrin interactions   总被引:1,自引:0,他引:1  
Nitta Y  Kuroda R 《Biopolymers》2006,81(5):376-391
The binding of manganese(III)-tetra(4-N-methylpyridyl)porphyrin (MnTMpyP) with synthetic poly(dA-dT)2, poly(dI-dC)2, and poly(dG-dC)2 DNAs as well as calf thymus (CT) DNA has been quantitatively studied in detail using induced CD (circular dichroism) spectroscopy in the Soret absorption band. The CD spectra, which changed greatly depending on the porphyrin to DNA base-pair molar ratio (r), were normalized with respect to DNA concentration and deconvoluted. Three independent component binding modes (named mode 1, 2, and 3 in the order of increasing r values) were identified, which successfully simulated the observed CD spectra with negligibly small residuals for a wide range of r values. In the case of poly(dA-dT)2, poly (dI-dC)2, and CT DNA, all the three modes appeared, whereas in the case of poly(dG-dC)2 DNA, only modes 1 and 3 appeared in the r range studied. The r dependence of each binding mode, i.e., its relative affinity toward DNA, has been revealed by this analysis. Mode 1, which appeared as a single binding mode at very low r values (r < or = ca. 0.05), was inhibited by the addition of methyl green, a drug that preferentially binds to the major groove of poly (dA-dT)2 DNA. Berenil, a known minor groove binder to poly(dA-dT)2 or poly(dI-dC)2 DNA, inhibited modes 2 and 3. From these inhibition experiments as well as comparison of the component spectra for DNAs of different sequence, a binding site on DNA was proposed for each component binding mode. The number of DNA base pairs covered by a single molecule of porphyrin was estimated.  相似文献   

11.

Background

Base dependent binding of the cytotoxic alkaloid harmalol to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by various photophysical and calorimetric studies, and molecular docking.

Methodology/Principal Findings

Binding data obtained from absorbance according to neighbor exclusion model indicated that the binding constant decreased in the order poly(dG-dC).poly(dG-dC)>poly(dA-dT).poly(dA-dT)>poly(dA).poly(dT)>poly(dG).poly(dC). The same trend was shown by the competition dialysis, change in fluorescence steady state intensity, stabilization against thermal denaturation, increase in the specific viscosity and perturbations in circular dichroism spectra. Among the polynucleotides, poly(dA).poly(dT) and poly(dG).poly(dC) showed positive cooperativity where as poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) showed non cooperative binding. Isothermal calorimetric data on the other hand showed enthalpy driven exothermic binding with a hydrophobic contribution to the binding Gibbs energy with poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) where as harmalol with poly(dA).poly(dT) showed entropy driven endothermic binding and with poly(dG).poly(dC) it was reported to be entropy driven exothermic binding. The study also tested the in vitro chemotherapeutic potential of harmalol in HeLa, MDA-MB-231, A549, and HepG2 cell line by MTT assay.

Conclusions/Significance

Studies unequivocally established that harmalol binds strongly with hetero GC polymer by mechanism of intercalation where the alkaloid resists complete overlap to the DNA base pairs inside the intercalation cavity and showed maximum cytotoxicity on HepG2 with IC50 value of 14 µM. The results contribute to the understanding of binding, specificity, energetic, cytotoxicity and docking of harmalol-DNA complexation that will guide synthetic efforts of medicinal chemists for developing better therapeutic agents.  相似文献   

12.
The conformation of synthetic or natural DNAs modified in vitro by covalent binding of N-AcO-A-Glu-P-3 was investigated by fluorescence and circular dichroism. In all cases, substitution occurs mainly on the C8 of guanine residues. In modified poly(dG-dC).poly(dG-dC) or poly(dA-dC).poly(dG-dT) in B conformation, A-Glu-P-3 residues interact strongly with the bases whereas in Z conformation these residues are largely exposed to the solvent and interact weakly with the bases. A-Glu-P-3 and N-acetyl-2-aminofluorene (AAF) residues are equally efficient to induce the B-Z transition of poly(dG-dC).poly(dG-dC) and of poly(dA-dC).poly(dG-dT). Modifications of poly(dG).poly(dC) and calf thymus DNA indicate strong interactions between A-Glu-P-3 and the bases.  相似文献   

13.
Duplex unwinding associated with DNA modification by 4-acetoxyaminoquinoline-1-oxide, a model ultimate carcinogen of 4-nitroquinoline-1-oxide, has been determined by the agarose gel electrophoresis band-shift method. An average unwinding angle per stable adduct of -15.1 degrees +/- 1.5 degrees for negatively supercoiled topoisomers and -6.5 degrees +/- 1.4 degrees for positively supercoiled topoisomers was obtained. Because of the different proportion of stable adducts (dGuo-N2-AQO, dGuo-C8-AQO, dAdo-N6-AQO) between negatively (8:1.5:0.5) and positively (5:2.5:1) supercoiled topoisomers, the difference in unwinding angles is suggestive of a diverse contribution of the various adducts to the overall conformational change. Since the largest unwinding angle was coupled with the highest proportion of dGuo-N2-AQO adduct, it is likely that this adduct is the most distortive lesion. A contribution of sites of base loss to DNA unwinding was also observed.  相似文献   

14.
In this work, the B-->Z transition of poly(dG-dC).poly(dG-dC) and the B-->A transition of poly(dG).poly(dC) and of calf thymus (CT) DNA fragments modified by antitumor bifunctional polynuclear platinum complexes were investigated by circular dichroism (CD). The transition from the B- to Z-form of DNA was inducible with all three compounds studied, as indicated by an inversion of the B-form spectra. The B-->A transition in poly(dG).poly(dC) was induced easily by platinum complex binding alone, while the B-->A transition in CT DNA was induced by ethanol but inhibited by coordination of all polynuclear platinum compounds used here. It was shown that the compound [?cis-PtCl(NH3)2?2 mu-?H2N(CH2)6NH2?] (NO3)2 (1,1/c,c) was most effective at inhibiting the B-->A transition in CT DNA, and [?trans-PtCl(NH3)2?2 mu-?trans-Pt(NH3)2(H2N(CH2)6NH2)2?] (NO3)4 (1,0,1/t,t,t) was least effective, while the effectiveness of [?trans-PtCl(NH3)2?2 mu-?H2N(CH2)6NH2?] (NO3)2 (1,1/t,t) fell between the two. This corresponded to the relative amounts of interstrand crosslinks in double-stranded DNA caused by each compound.  相似文献   

15.
Interaction of topotecan (TPT) with synthetic double-stranded polydeoxyribonucleotides has been studied in solutions of low ionic strength at pH = 6.8 by linear flow dichroism (LD), circular dichroism (CD), UV-Vis absorption and Raman spectroscopy. The complexes of TPT with poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dC).poly(dG-dT), poly(dA).poly(dT) and previously studied by us complexes of TPT with calf thymus DNA and coliphage T4 DNA have been shown to have negative LD in the long-wavelength absorption band of TPT, whereas the complex of TPT with poly(dA-dT).poly(dA-dT) has positive LD in this absorption band of TPT. Thus, there are two different types of TPT complexes with the polymers. TPT has been established to bind preferably to GC base pairs because its affinity to the polymers of different GC composition decreases in the following order: poly(dG-dC).poly(dG-dC) > poly(dG).poly(dC) > poly(dA-dC).poly(dG-dT) > poly(dA).poly(dT). The presence of DNA has been shown to shift monomer-dimer equilibrium in TPT solutions toward dimer formation. Several duplexes of the synthetic polynucleotides bound together by the bridges of TPT dimers may participate in the formation of the studied type of TPT-polynucleotide complexes. Molecular models of TPT complex with linear and ring supercoiled DNAs and with deoxyguanosine have been considered. TPT (and presumably all camptothecin family) proved to be a representative of a new class of DNA-specific ligands whose biological action is associated with formation of dimeric bridges between two DNA duplexes.  相似文献   

16.
Cultured mouse L5178Y cells were exposed to several carcinogenic and antitumor agents. After exposure to one of the agents, the cells were label with [3H]-thymidine for 20 min, and the DNA was subjected to alkaline sucrose gradient centrifugation immediately or after a chase period. This led us to classify the agents into 3 groups: (1) UV, 4-nitroquinoline-1-oxide (4NQO), N-methyl-N′-nitrosoguanidine (MNNG), nitrogen mustard and Mitomycin C. These were characterized by 20-min DNA labeling patterns showing the formation of small DNA and by the slowing down of their subsequent elongation. Replicated DNA strands would have gaps where “damage” was present on the parental strands. Subsequently, gap-filling replication would occur with or without repairing damage. (2) γ-rays. The 20-min DNA labeling profile displayed a larger size of DNA pieces and the subsequent elongation of this DNA was slightly affected. This probably due to a preferential depression of initiation DNA replication. (3) Methyl methanesulfonate (MMS) and low temperature (28°). The 20-min DNA labeling patterns were qualitatively similar to, but quantitatively different from those of non-irradiated control. The rate of DNA elongation was slightly retarded.  相似文献   

17.
Poly(dG-m5dC)·poly(dG-m5dC) was modified by treatment with N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) and its conformation examined by circular dichroism (CD) and susceptibility to S1 nuclease digestion. A sample with a modification level of 10% shows a CD spectrum characteristic of the Z form and is resistant to digestion by S1 nuclease. The relative reactivity of several polymers with N-Aco-AAF was shown to follow the order of ease of formation of Z DNA: poly(dG-m5dC)·poly(dG-m5dC) > poly(dG-dC)·poly(dG-dC) > poly(dG)·poly(dC). This suggests that AAF reacts more readily with Z DNA than B DNA.  相似文献   

18.
The reactions of bis(platinum) complexes of general formula [(PtClm(NH3)3-m)2(NH2(CH2)nNH2)]2(2-m)+ were studied with poly(dG-dC).poly(dG-dC), poly(dG-m5dC).poly(dG-m5dC) and poly(dG).poly(dC). When m = 0 (Complexes II, n = 2,4) the complexes are saturated 4+ cations capable only of electrostatic interactions with the polynucleotide. Where m = 1 the complexes contain two monodentate platinum coordination spheres with the chloride trans to the diamine bridge (Complexes I, n = 2,4, 1,1/t,t). Complexes I give CD spectra characteristic of a 'Z-like' conformation upon reaction with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) but not poly(dG).poly(dC). The B----Z transition appears independent of interplatinum diamine chain length. As little as 1 bis(platinum) complex per 25-30 base pairs is sufficient to observe the Z-like spectrum. Covalent binding is however not a prerequisite for Z-DNA formation because the polyvalent cations II are also very effective in inducing the B----Z transition in either poly(dG-dC).poly(dG-dC) or poly (dG-m5dC).poly(dG-m5dC). In these cases, the concentrations of II required are significantly lower than analogous monomeric agents such as [Co(NH3)6]3+. The possible biological consequences of the Z-DNA induction by bis(platinum) complexes are discussed.  相似文献   

19.
The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies.  相似文献   

20.
F M Chen 《Biochemistry》1987,26(14):4323-4331
Evidence from absorbance, fluorescence, and circular dichroism (CD) measurements strongly suggests that adduct conformations at the binding sites are grossly different before and after thermal denaturation of (+)-trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]py ren e [(+)-anti-BPDE] modified DNAs. This conclusion is reached through the following observations: (1) upon melting and cooling, the (+)-anti-BPDE-modified DNA exhibits pronounced hypochromic effects with concomitant spectral red shifts for the pyrenyl absorbance; (2) the pyrenyl CD spectrum reverses sign upon thermal denaturation-renaturation; (3) the fluorescence emission spectra resulting from excitations at 353 nm (10 nm to the red of hydrolyzed and unbound anti-BPDE) exhibit enhanced intensities and spectral red shifts for the thermally denatured and cooled adducts; and (4) in contrast to the absence of a shoulder prior to melting, the postmelt adducts exhibit a prominent 355-nm maximum (evidence of stacking interactions) in the excitation spectrum when 384-387-nm emission is monitored. Studies with synthetic polynucleotides further reveal that (+)-anti-BPDE-modified poly(dG).poly(dC) exhibits the greatest nonreversible renaturation at the binding sites, possibly as a consequence of pyrenyl self-stacking. This, coupled with the previous findings that this polymer suffers the most extensive (+)-anti-BPDE modification, appears to suggest that (dG)n . (dC)n regions may be responsible for such observed effects in native DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号