首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fertilization is a key agricultural practice for increasing millet yields and influencing soil properties, enzyme activities and rhizosphere bacterial communities. High throughput Illumina sequencing of the 16S rDNA was applied to compare the bacterial community structures and diversities among six different soil samples. The experiments involved the following: no fertilizer (CK), phosphate (P) and potassium (K) plus organic manure (M) (PKM), nitrogen (N) and K plus M (NKM), NPM, NPK and NPKM fertilization. The results showed that the NPKM fertilization of the millet field had a maximal yield of 3617 kg ha?1 among the six different treatments. The abundances of the Actinobacteria and Bacteroidetes phyla, especially the Devosia, Mycobacterium, Opitutus and Chitinophaga genera, were higher in NPKM than those in the other samples. Redundancy analysis showed that the soil organic matter (SOM), available phosphorus (AP), and urease (UR) activity were significantly correlated with bacterial communities, while SOM and AP were strongly correlated with soil enzyme activities. Pearson’s correlation showed that the available nitrogen was strongly correlated with Devosia and Mycobacterium, and SOM was strongly correlated with Opitutus and Chitinophaga. Besides, catalase was significantly related to Iamia, the UR was significantly related to Devosia, phosphatase was significantly related to Luteimonas and Chitinophaga. Based on the soil quality and millet yield, NPKM treatment was a better choice for the millet field fertilization practices. These findings provide a better understanding of the importance of fertilization in influencing millet yield, soil fertility and microbial diversity, and they lead to a choice of scientific fertilization practices for sustainable development of the agroecosystem.  相似文献   

2.
This study was conducted to assess bacterial species richness, diversity and community distribution according to different fertilization regimes for 16 years in citrus orchard soil of volcanic ash. Soil samples were collected and analyzed from Compost (cattle manure, 2,000 kg/10a), 1/2 NPK+compost (14-20-14+2,000 kg/10a), NPK+compost (28-40-28+2,000 kg/10a), NPK (28-40-28 kg/10a), 3 NPK (84-120-84 kg/10a), and Control (no fertilization) plot which have been managed in the same manners with compost and different amount of chemical fertilization. The range of pyrosequencing reads and OTUs were 4,687–7,330 and 1,790–3,695, respectively. Species richness estimates such as Ace, Chao1, and Shannon index were higher in 1/2 NPK+compost than other treatments, which were 15,202, 9,112, 7.7, respectively. Dominant bacterial groups at level of phylum were Proteobacteria, Acidobacteria, and Actinobacteria. Those were occupied at 70.9% in 1/2 NPK+compost. Dominant bacterial groups at level of genus were Pseudolabrys, Bradyrhizobium, and Acidobacteria. Those were distributed at 14.4% of a total of bacteria in Compost. Soil pH displayed significantly closely related to bacterial species richness estimates such as Ace, Chao1 (p<0.05) and Shannon index (p<0.01). However, it showed the negative correlation with exchangeable aluminum contents (p<0.05). In conclusion, diversity of bacterial community in citrus orchard soil was affected by fertilization management, soil pH changes and characteristics of volcanic ash.  相似文献   

3.
4.
5.
6.
Tartary buckwheat (Fagopyrum tataricum Gaertn) has been praised as one of green foods for humans in the 21st century. Effects of fertilization on leaf photosynthetic characteristics and grain yield of tartary buckwheat has not been yet reported in detail. Our experiment was set as a split-plot factorial. The main plots and subplots were designed by fertilizer ratio and rate as: NPK 1:1:1 (A1), NPK 1:4:2 (A2), NPK 1:2:3 (A3), and 300 (B1), 450 (B2), and 600 (B3) kg (NPK) ha–1. Our results showed that the grain yield was significantly and positively correlated with the net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), PAR, stomatal limitation value (Ls), chlorophyll content (SPAD value), and leaf area index (LAI), while significantly and negatively correlated with intercellular CO2 concentration (C i) and water-use efficiency (WUE). The grain yield, P N, g s, E, PAR, Ls, SPAD, and LAI increased and then decreased with enhanced fertilization, and their maximum values appeared in the A2B2 treatment. The C i and WUE decreased and then increased with enhanced fertilization, and their minimum values appeared in the A2B2 treatment. Our results suggested that fertilization had significant effects on the leaf photosynthetic capacity and grain yield of tartary buckwheat Yunqiao 1, and the best fertilization strategy was 450 kg ha–1 with NPK 1:4:2.  相似文献   

7.
8.
9.
Serine proteinases play important roles in innate immunity and insect development. We isolated a serine proteinase gene, designated AccSp10, from the Chinese honeybees (Apis cerana cerana). RT-qPCR and a Western blot analysis at different pupal development stages indicated that AccSp10 might be involved in melanin formation in pupae and promote pupal development. In adult workers, the expression of AccSp10 was upregulated by treatments mimicking harmful environments such as the presence of Bacillus bombysepticus, different temperatures (4, 24 and 42 °C), HgCl2, H2O2 and paraquat; the exception was treatment with VC (vitamin C), which did not upregulate AccSp10 expression. Western blot confirmed the results. A disc diffusion assay indicated that recombinant AccSp10 accelerated E. coli cell death during stimulation with harmful substances (HgCl2, paraquat and cumene hydroperoxide). These findings suggest that AccSp10 may be involved in the pupal development of Chinese honeybees and protection against microorganisms and abiotic harms.  相似文献   

10.
Cyclotides are small plant disulfide-rich and cyclic proteins with a diverse range of biological activities. Cyclotide-like genes show key sequence features of cyclotides and are present in the Poaceae. In this study the cDNA of the nine cyclotide-like genes were cloned and sequenced using 3′RACE from Zea mays. The gene expression of two of these genes (Zmcyc1 and Zmcyc5) were analyzed by real-time PCR in response to biotic (Fusarium graminearum, Ustilago maydis and Rhopalosiphum maydis) and abiotic (mechanical wounding, water deficit and salinity) stresses, as well as in response to salicylic acid and methyl jasmonate elicitors to mimic biotic stresses. All isolated genes showed significant similarity to other cyclotide-like genes and were classified in two separate clusters. Both Zmcyc1 and Zmcyc5 were expressed in all studied tissues with the highest expression in leaves and lowest expression in roots. Wounding, methyl jasmonate and salicylic acid significantly induced the expression of Zmcyc1 and Zmcyc5 genes, but the higher expression was observed for Zmcyc1 as compared with Zmcyc5. Expression levels of these two genes were also induced in inoculated leaves with F. graminearum, U. maydis and also in response to insect infestation. In addition, the 1000-base-pairs (bp) upstream of the promoter of Zmcyc1 and Zmcyc5 genes were identified and analyzed using the PlantCARE database and consequently a large number of similar biotic and abiotic cis-regulatory elements were identified for these two genes.  相似文献   

11.
12.
13.
This paper identifies the potential molecular markers predicting the impact of nTiO2 on plants and explores the new statistical correlations between the biomarkers and growth parameters. The quantitative mRNA expression of the three genes involved in DNA mismatch repair (MLH1) and cell division (PCNA1 and PCNA2) in Zea mays and Triticum aestivum seedlings were related to the growth parameters measured in response to five nTiO2 treatments. The results indicated that the higher concentrations were harmless to Z. mays but not to T. aestivum. nTiO2 treatments increased the total protein levels in both species and significantly inhibited the percentage of DPPH radical scavenging in Z. mays compared with T. aestivum seedlings. The exposure to both 50 μg/ml and 30 μg/ml concentrations of nTiO2 significantly induced the expression of MLH1 and PCNA1 genes in both species; however, the exposure to 30 μg/ml of nTiO2 also significantly induced the expression of PCNA2 genes in T. aestivum. The exposure to 50, 70 and 140 μg/ml significantly inhibited the expression of PCNA2 in both species, while 70 and 140 μg/ml repressed the expression of MLH1 and PCNA1 in the seedlings of Z. mays. The induction and repression of the expression of the three genes were correlated with some growth parameters and biological indices in both species. This key finding suggests that the above genes may play a vital role in mediating plant stress response to nTiO2 and could be used as sensitive molecular biomarkers indicative of the oxidative stress of nTiO2 exposure.  相似文献   

14.
15.
16.
17.
18.
19.
Impoundment of the Three Gorges Reservoir (TGR) has dramatically influenced the riparian environment and shaped a new drawdown zone, which has experienced long-term winter conditions and short periods of summer flooding. The community structure and diversity of arbuscular mycorrhizal (AM) fungi (AMF) were investigated in three areas with different fertilization histories [Area A (5 years of fertilization), Area B (3 years of fertilization) and Area C (no fertilization)] in the drawdown zone of the TGR. Altogether, 50 AMF species were identified; the genera Acaulospora, Funneliformis and Glomus were predominant. The AM fungal community differed among areas A, B and C. A higher isolation frequency and relative abundance of Acaulospora, Ambispora, Entrophospora and Paraglomus were observed in areas A and B; however, Claroideoglomus, Diversispora, Sclerocystis and Septoglomus were more abundant in Area C. The highest spore density occurred in Area C, and was slightly lower in Area A and lowest in Area B. Conversely, species richness and diversity indices (Shannon–Wiener and evenness indices) were the highest in Area A, followed by areas C and B. Based on nonmetric multidimensional scaling analyses, the distribution of AMF was influenced by plant host, fertilization practice and environmental factors. Among them, the soil physicochemical properties were the main drivers affecting AMF, in which three edaphic attributes (carbon/nitrogen ratio, available phosphorus and potassium content) were significantly correlated (P < 0.001) with the AM fungal community composition in the three areas of the drawdown zone of the TGR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号