首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xylan–lignin (XL), glucomannan–lignin (GML) and glucan–lignin (GL) complexes were isolated from spruce wood, hydrolyzed with xylanase or endoglucanase/β-glucosidase, and analyzed by analytical pyrolysis and 2D-NMR. The enzymatic hydrolysis removed most of the polysaccharide moieties in the complexes, and the lignin content and relative abundance of lignin–carbohydrate linkages increased. Analytical pyrolysis confirmed the action of the enzymatic hydrolysis, with strong decreases of levoglucosane and other carbohydrate-derived products. Unexpectedly it also revealed that the hydrolase treatment alters the pattern of lignin breakdown products, resulting in higher amounts of coniferyl alcohol. From the anomeric carbohydrate signals in the 2D-NMR spectra, phenyl glycoside linkages (undetectable in the original complexes) could be identified in the hydrolyzed GML complex. Lower amounts of glucuronosyl and benzyl ether linkages were also observed after the hydrolysis. From the 2D-NMR spectra of the hydrolyzed complexes, it was concluded that the lignin in GML is less condensed than in XL due to its higher content in β-O-4′ ether substructures (62 % of side chains in GML vs 53 % in XL) accompanied by more coniferyl alcohol end units (16 vs 13 %). In contrast, the XL lignin has more pinoresinols (11 vs 6 %) and dibenzodioxocins (9 vs 2 %) than the GML (and both have ~13 % phenylcoumarans and 1 % spirodienones). Direct 2D-NMR analysis of the hydrolyzed GL complex was not possible due to its low solubility. However, after sample acetylation, an even less condensed lignin than in the GML complex was found (with up to 72 % β-O-4′ substructures and only 1 % pinoresinols). The study provides evidence for the existence of structurally different lignins associated to hemicelluloses (xylan and glucomannan) and cellulose in spruce wood and, at the same time, offers information on some of the chemical linkages between the above polymers.  相似文献   

2.
1. Lignin-carbohydrate complexes isolated from leaf blade, leaf sheath and stem tissue of ryegrass by extraction with dimethyl sulphoxide were examined by fractionation procedures. Although the complexes are heterogeneous, heterogeneity is shown only in the ratio of the individual monosaccharide residues and not in the ratio of lignin to carbohydrate. 2. The molecular weight of the complexes is high (>/=150000), but chemical modification by alkaline hydrolysis, borohydride reduction or lead tetra-acetate oxidation does not drastically decrease it. Low-molecular-weight fragments released by alkaline treatment were shown to contain acetic acid, ferulic acid and p-coumaric acid. 3. On the basis of the chemical stability of the complexes, it is postulated that at least three types of bonding may be present between lignin and carbohydrate, namely one cleaved on borohydride reduction, another cleaved by alkali and a linkage resistant to alkali. 4. The carbohydrate portion of the complexes is composed of beta-(1-->4)-linked d-glucose residues (cellulose) and beta-(1-->4)-linked chains of xylose residues. Side chains involving arabinose and galactose residues are linked to C-3 of some of the xylose residues. 5. How the components of the complexes are held together is not certain, but it is suggested that the phenolic acids may act as cross-linking agents.  相似文献   

3.
Overcoming lignocellulosic biomass recalcitrance, especially the cleavage of cross-linkages in lignin–carbohydrate complexes (LCCs) and lignin, is essential for both the carbon cycle and industrial biorefinery. Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in fungal polysaccharide oxidative degradation. Nevertheless, comprehensive analysis showed that LPMOs from a white-rot fungus, Pleurotus ostreatus, correlated well with the Fenton reaction and were involved in the degradation of recalcitrant nonpolysaccharide fractions in this research. Thus, LPMOs participated in the extracellular Fenton reaction by enhancing iron reduction in quinone redox cycling. A Fenton reaction system consisting of LPMOs, hydroquinone, and ferric iron can efficiently produce hydroxy radicals and then cleave LCCs or lignin linkages. This finding indicates that LPMOs are underestimated auxiliary enzymes in eliminating biomass recalcitrance.  相似文献   

4.
The measurement of androgen steroids has been utilized as a clinical indicator of adrenal function, androgen abuse, and as a prediction of general health or biological aging. An improved high-performance liquid chromatography–ion trap mass spectroscopic method with sonic spray ionization (SSI) technology for the quantification of individual urinary 17-ketosteroid sulfates and glucuronides was developed and validated. Sample preparation was simplified using a C18 cartridge followed by direct injection onto a reversed-phase HPLC column. Individual 17-ketosteroid from 63 urinary specimens collected in a 24-h period was measured. 17-Ketosteroid conjugates, total 17-KS-S and the ratio of total 17-KS-S to creatinine referred to herein as the Anabolic/Catabolic Index (ACI) showed statistically significant negative correlations with age.  相似文献   

5.
1. The glycopeptides derived from a proteolytic digest of sialic acid-free α1-acid glycoprotein were separated on a DEAE-cellulose column into five main fractions. 2. The average molecular weight of these glycopeptides was 2400, except for one fraction whose molecular weight was 3100. The average molecular weight of the sialic acid-free carbohydrate units was found to be 2200. From these data and the carbohydrate content of the native protein and the assumed molecular weight of 44000, it was concluded that α1-acid glycoprotein probably possesses five carbohydrate units. The sialic acid-containing carbohydrate units of this glycoprotein have an average molecular weight of 3000, except for one unit the molecular weight of which is significantly higher. 3. The N-, non-N- and C-terminal amino acids of the main glycopeptides were determined. Aspartic acid and threonine occur in most peptides. Alanine, glycine, proline, serine and lysine were present in varying amounts. Traces of other amino acids were also found. 4. The amino acid sequence of three main glycopeptides was established and indicated that these glycopeptides are located at different positions of the polypeptide chain of the glycoprotein. These sequences are: Asp(NH2)-Pro-Lys; Thr-Asp(NH2)-Ala; Asp(NH2)-Gly-Thr. 5. From the results of a series of chemical reactions (periodate oxidation, hydrazinolysis, dinitrophenylation, mild acid hydrolysis) it was shown that the hydroxyl group of the N-terminal threonine and the -amino group of lysine are free and that the β-carboxyl group of aspartic acid is present as amide. It was concluded that this amide group is involved in the carbohydrate–polypeptide linkages of at least four carbohydrate units of α1-acid glycoprotein. 6. The carbohydrate composition of the sialic acid-free glycopeptides was determined in terms of moles of neutral hexoses, glucosamine and fucose/mole. 7. Fucose, at least to the larger part, is not linked to sialic acid, and its (glycosidic) linkage is significantly more stable toward acid hydrolysis than the bond of the sialyl residues. 8. Heterogeneity of the carbohydrate units of α1-acid glycoprotein was found with regard to size and to content of fucose and sialic acid.  相似文献   

6.
Several methods have been developed to protect feed protein from rumen microbial degradation. The current study aimed to evaluate the potential use of an industrial lignin, namely hydrolytic lignin, to protect protein from rumen microbial degradation. The hydrolytic lignins assessed in this study were extracted from wheat straw previously subjected to various steam treatment conditions (pressure: 15, 17 and 19 bar; reaction time: 0, 5 and 10 min; use of acidic catalyst: without and with 2% H2SO4 on DM basis). Results indicated that hydrolytic lignin can precipitate protein when measured by a standard bovine serum albumin assay. It was also observed that protein-precipitating capacity of lignin increased with increasing harshness of steam treatment until a point from which no further effect was observed. The effect of lignin upon protein degradation in vitro was clearly detected. Both ammonia nitrogen and iso-acid concentration in vitro were significantly decreased (P<0.01) when lignin was added to fermentation flask containing casein. Unlike tannins, hydrolytic lignins do not inhibit rumen microbial activity. Additionally, it was observed that lignin’s ability to bind and protect protein is a pH-dependent reaction. Protein binding to lignin is markedly reduced at pH<3.0.  相似文献   

7.
Methyl 2,3-anhydro-4,6-O-benzylidene-3-C-nitro-β-d-allopyranoside (1), as well as its β-d-manno (2) and α- d-manno (3) isomers, reacted with dimethylamine to give the same, crystalline 3-(dimethylamino) adduct (4) of 1,5-anhydro-4,6-O-benzylidene-2-deoxy-2-(dimethylamino)-d-erythro-hex-1-en-3-ulose (5). The enulose 5 was obtained from 4 by the action of silica gel. Similarly, the β-d-gulo (6) and α-d-talo (7) stereoisomers of 13 afforded a 3-(dimethylamino) adduct (8) of the d-threo isomer (9) of 5. Reaction of dimethylamine with 5,6-anhydro-1,2-O-isopropylidene-6-C-nitro-α-d-glucofuranose (10) yielded a mixture of two diastereoisomeric (possibly anometic at C-6) 5-deoxy-5-(dimethylamino)-1,2-O-isopropylideric-α-d-hexodialdo-1,4:6,3-difuranoses (11). The β-glycoside 1 and the α-glycoside 3 reacted with methylmagnesium iodide to produce methyl 4,6-O-benzylidene-3-deoxy-3-C-methyl-3-(N-hydroxy-N-methylamino)-β- and -α-d-hexopyranosides (12) and (13), respectively; both products had the 1,2-trans configuration, but their configurations at the quaternary center C-3 have not been determined.  相似文献   

8.
To advance our understanding of the protein folding process, we use stopped-flow far-ultraviolet (far-UV) circular dichroism and quenched-flow hydrogen–deuterium exchange coupled with nuclear magnetic resonance (NMR) spectroscopy to monitor the formation of hydrogen-bonded secondary structure in the C-terminal domain of the Fas-associated death domain (Fadd-DD). The death domain superfamily fold consists of six α-helices arranged in a Greek-key topology, which is shared by the all-β-sheet immunoglobulin and mixed α/β-plait superfamilies. Fadd-DD is selected as our model death domain protein system because the structure of this protein has been solved by NMR spectroscopy, and both thermodynamic and kinetic analysis indicate it to be a stable, monomeric protein with a rapidly formed hydrophobic core. Stopped-flow far-UV circular dichroism spectroscopy revealed that the folding process was monophasic and the rate is 23.4 s−1. Twenty-two amide hydrogens in the backbone of the helices and two in the backbone of the loops were monitored, and the folding of all six helices was determined to be monophasic with rate constants between 19 and 22 s−1. These results indicate that the formation of secondary structure is largely cooperative and concomitant with the hydrophobic collapse. This study also provides unprecedented insight into the formation of secondary structure within the highly populated Greek-key fold more generally. Additional insights are gained by calculating the exchange rates of 23 residues from equilibrium hydrogen–deuterium exchange experiments. The majority of protected amide protons are found on helices 2, 4, and 5, which make up core structural elements of the Greek-key topology.  相似文献   

9.
NMR chemical shift changes of the cyclomaltoheptaose (β-cyclodextrin, β-CD) cavity protons as well as roxatidine acetate hydrochloride aromatic ring protons revealed the formation of a RAH–β-CD inclusion complex. Detailed FTIR and NMR spectroscopic (1H NMR, COSY, NOESY, ROESY) studies have been done. The stoichiometry of the complex was determined to be 1:1, and the overall binding constant was also determined by Scott’s method. The NOESY spectrum confirmed the selective penetration of the aromatic ring of RAH into the β-CD cavity in comparison to that of the piperidine ring. The mode of penetration of the guest into the CD cavity and structure of the complex has been established.  相似文献   

10.
REDOR-based experiments with simultaneous 1H–13C and 1H?15N dipolar dephasing are explored for investigating intermolecular protein–protein interfaces in complexes formed by a U–13C,15N-labeled protein and its natural abundance binding partner. The application of a double-REDOR filter (dREDOR) results in a complete dephasing of proton magnetization in the U–13C,15N-enriched molecule while the proton magnetization of the unlabeled binding partner is not dephased. This retained proton magnetization is then transferred across the intermolecular interface by 1H–13C or 1H–15N cross polarization, permitting to establish the residues of the U–13C,15N-labeled protein, which constitute the binding interface. To assign the interface residues, this dREDOR-CPMAS element is incorporated as a building block into 13C–13C correlation experiments. We established the validity of this approach on U–13C,15N-histidine and on a structurally characterized complex of dynactin’s U–13C,15N-CAP-Gly domain with end-binding protein 1 (EB1). The approach introduced here is broadly applicable to the analysis of intermolecular interfaces when one of the binding partners in a complex cannot be isotopically labeled.  相似文献   

11.
We used xenon-perturbed 1H–15N multidimensional NMR to investigate the structural changes in the urea-induced equilibrium unfolding of the dimeric ketosteroid isomerase (KSI) from Pseudomonas putida biotype B. Three limited regions located on the β3-, β5- and β6-strands of dimeric interface were significantly perturbed by urea in the early stage of KSI unfolding, which could lead to dissociation of the dimer into structured monomers at higher denaturant concentration as the interactions in these regions are weakened. The results indicate that the use of xenon as an indirect probe for multidimensional NMR can be a useful method for the equilibrium unfolding study of protein at residue level.  相似文献   

12.
An important approach to generalizing across different taxa and systems is to focus on functional traits rather taxonomic identity. However, this approach assumes, usually implicitly, that the same value of the same trait will have the same effect in all taxa. This assumption is probably never true in the strictest sense, but it is less clear to what extent even the direction and shape of trait–performance relationship are consistent among taxa. Wildova et al. (Oikos 116:836–852, 2007) addressed this question by manipulating traits in a highly calibrated model of clonal plants, parameterized for six sedge species. They found traits connected to growth and allocation were largely consistent in their performance effects across taxa, while morphological and architectural traits were much more contingent. This result suggests that traits not directly related to resource acquisition and use should show much less consistent patterns across systems and be less susceptible to ecological generalizations.  相似文献   

13.
14.
The copper-mediated protein–protein interaction between yeast Atx1 and Ccc2 has been examined by protonless heteronuclear NMR and compared with the already available 1H–15N HSQC information. The observed chemical shift variations are analyzed with respect to the actual solution structure, available through intermolecular NOEs. The advantage of using the CON-IPAP spectrum with respect to the 1H–15N HSQC resides in the increased number of signals observed, including those of prolines. CBCACO-IPAP experiments allow us to focus on the interaction region and on side-chain carbonyls, while a newly designed CEN-IPAP experiment on side-chains of lysines. An attempt is made to rationalize the chemical shift variations on the basis of the structural data involving the interface between the proteins and the nearby regions. It is here proposed that protonless 13C direct-detection NMR is a useful complement to 1H based NMR spectroscopy for monitoring protein–protein and protein–ligand interactions. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at  相似文献   

15.
Summary α-conotoxin EI is an 18-residue peptide (RDOCCYHPTCNMSNPQIC; 4–10, 5–18) isolated from the venom ofConus ermineus, the only fish-hunting cone snail of the Atlantic Ocean. This peptide targets specifically the nicotinic acetylcholine receptor (nAChR) found in mammalian skeletal muscle and the electric organTorpedo, showing a novel selectivity profile when compared to other α-conotoxins. The 3D structure of EI has been determined by 2D-NMR methods in combination with dynamical simulated annealing protocols. A total of 133 NOE-derived distances were used to produce 13 structures with minimum energy that complied with the NOE restraints. The structure of EI is characterized by a helical loop between THr9 and Met12 that is stabilized by the Cys4-Cys10 disulfide bond and turns involving Cys4-Cys5 and Asn14-Pro15. Other regions of the peptide appear to be flexible. The overall fold of EI is similar to that of other α4/7-conotoxins (PnIA/B, MII, EpI). However, unlike these other α4/7-conotoxins, EI targets the muscular type nAChR. The differences in selectivity can be attributed to differences in the surface charge distribution among these α4/7-conotoxins. The implications for binding of EI to the muscular nAChR are discussed with respect to the current NMR structure of EI. Supplementary material available:1H resonance assignments of α-conotoxin EI.  相似文献   

16.
A new experiment, the forward directed quantitative -HCCH-TOCSY for the measurement of the conformation of the five-membered ribosyl unit in RNA oligonucleotides, is presented. The experiment relies on quantification of cross peak intensities caused by evolution of CH,CH-dipole–dipole cross correlated relaxation in non-evolution periods and the resolution enhancement obtainable in forward directed HCC-TOCSY transfer. Cross correlated relaxation rates are interpreted to reveal the sugar conformation of 22 out of 25 nucleotides in an isotopically labelled 25-mer RNA. The results obtained with this new method are in agreement with the conformational analysis derived from 3J(H,H) coupling constants.  相似文献   

17.
Cell walls of strains of Lactobacillus plantarum lacking the group D precipitinogen (a glucosylribitol teichoic acid) contain glucosylglycerol teichoic acid in which the glycosidic substituents are attached to the primary hydroxyl group of glycerol. Three distinct repeating units have been isolated from the teichoic acid preparation of strain C106, indicating either that the polymer is complex or that the wall contains a mixture of teichoic acids. Walls of streptobacteria differ from those of L. plantarum and contain neither teichoic acid nor diaminopimelic acid.  相似文献   

18.
Summary The backbone dynamics of free ribonuclease T1 and its complex with the competitive inhibitor 2GMP have been studied by 15N longitudinal and transverse relaxation experiments, combined with {1H, 15H} NOE measurements. The intensity decay of individual amide cross peaks in a series of (1H, 15N)-HSQC spectra with appropriate relaxation periods (Kay, L.E. et al. (1989) Biochemistry, 28, 8972–8979; Kay, L.E. et al. (1992) J. Magn. Reson., 97, 359–375) was fitted to a single exponential by using a simplex algorithm in order to obtain 15N T1 and T2 relaxation times. These experimentally obtained values were analysed in terms of the model-free approach introduced by Lipari and Szabo (Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559; 4559–4570). The microdyramical parameters accessible by this approach clearly indicate a correlation between the structural flexibility and the tertiary structure of ribonuclease T1, as well as restricted mobility of certain regions of the protein backbone upon binding of the inhibitor. The results obtained by NMR are compared to X-ray crystallographic data and to observations made in molecular dynamics simulations.  相似文献   

19.
This paper concerns the applicability of the cross‐correlation technique for the assessment of shifts of the circadian system (e.g., caused by night work). Melatonin and cortisol profiles of 52 healthy young men were ascertained during two 24 h phase assessment procedures. The first was performed after three consecutive day shifts, and the second was performed one week later on 24 men again after three day shifts and on 28 men after three night shifts, where adaptation to night work was accelerated by bright light. The cross‐correlation technique that relies on the processing of all the measured data of a whole profile, as compared to the differences between temporal parameters determined with a conventional method, provided reliable estimates of the phase shifts. Its applicability is restricted to time series with similar profiles assessed at different times and to observation periods of a full diurnal cycle (in the case of substantial shifts) with equally distributed measures, but it is applicable to raw data and available in common statistical packages (e.g., SPSS, SAS, BMDP).  相似文献   

20.
Single-crystal X-ray diffraction and high-resolution 1H and 13C NMR spectral data for methyl 6-deoxy-6-iodo-α-d-glucopyranoside are reported. The 4C1 conformation was found to be the preferred form for this compound, both in the crystal lattice and in solution. The rotational preferences of all the groups bound to the pyranose ring are presented. The stabilization of the crystal structure by a network of O-H···O intra- and intermolecular interactions as well as the short contacts of the iodine atoms is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号