首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anabaena azollae was isolated fromAzolla caroliniana by the gentle roller method and differential centrifugation. Incubation of suchAnabaena preparations for 10 min with [13N]N2 resulted in the formation of four radioactive compounds; ammonium, glutamine, glutamate and alanine. Ammonium accounted for 66% of the total radioactivity recovered and 58% of the ammonium was in an extracellular fraction. Since essentially no extracellular13N-labeled organic compounds were found, it appears that ammonium is the compound most probably made available toAzolla during dinitrogen-dependent growth of the association.The kinetics of incorporation of exogenous13NH 4 + into glutamine and glutamate were characteristic of a precursor (glutamine)-product (glutamate) relationship and consistent with assimilation by the glutamine synthetase-glutamate synthase pathway. The results of experiments using the glutamine synthetase inhibitor, methionine sulfoximine, the glutamate synthase inhibitor, diazo-oxonorleucine, and increasing the ammonium concentration to greater than 1 mM, provided evidence for assimilation primarily by the glutamine synthetase-glutamate synthase pathway with little or no contribution from biosynthetic glutamate dehydrogenase.While showing that N2 fixation and NH 4 + assimilation were not tightly coupled metabolic processes in symbioticAnabaena, these results reflect a composite picture and do not indicate the extent to which ammonium assimilatory enzymes might be regulated in filaments associated with specific stages in theAzolla-Anabaena developmental profile.Non-standard abbreviations DON 6-Diazo-5-oxo-l-norleucine - GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSX l-methionine-Dl-sulfoximine  相似文献   

2.
We previously isolated and characterized a new free amino acid withd-configuration at the α-carbon,trans-3, 4-dehydro-d-2-aminopimelic acid and its related amino acids,d-2-aminopimelic acid and 4-hydroxy-l-2-aminopimelic acid fromAsplenium unilaterale. In this paper, we report that the biosynthetic relationshps among these three amino acids were studied using14C-and3H-labeled compounds as tracers. Glutamate and aspartate were shown to be good precursors and it was suggested that 4-hydroxy-l-2-aminopimelic acid is biosynthesized first and the twod-amino acids are derived from it. Furthermore, the distribution patterns of these non-protein amino acids inAsplenium sect.Hymenasplenium were examined in detail and they were evaluated by their biosynthetic pathway. Morphological characters especially on their rhizomes were also examined and their character phylogeny was determined by outgroup comparison. Taking all the characters available into account, the phylogenetic relationship among 7 species ofAsplenium sect.Hymenasplenium in Japan and Taiwan is discussed by the transformed cladistic method.  相似文献   

3.
On following N2-incorporation and subsequent metabolism in the lichen Peltigera canina using 15N as tracer, it was found, over a 30 min period, that greatest initial labelling was into NH 4 + followed by glutamate and the amide-N of glutamine. Labelling of the amino-N of glutamine, aspartate and alanine increased slowly. Pulse-chase experiments using 15N confirmed this pattern. On inhibiting the GS-GOGAT pathway using l-methionine-dl-sulphoximine and azaserine, 15N enrichment of glutamate, alanine and aspartate continued although labelling of glutamine was undetectable. From this and enzymic data, NH 4 + assimilation in the P. canina thallus appears to proceed via GS-GOGAT in the cyanobacterium and via GDH in the fungus; aminotransferases were present in both partners. The cyanobacterium assimilated 44% of the 15N2 fixed; the remainder was liberated almost exclusively as NH 4 + and then assimilated by fungal GDH.Abbreviations ADH alanine dehydrogenase - APT aspartate-pyruvate aminotransferase - AOA aminooxyacetate - GDH glutamate dehydrogenase - GOT glutamate-oxaloacetate aminotransferase - GOGAT glutamate synthase - GPT glutamate-pyruvate aminotransferase - GS glutamine synthetase - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine  相似文献   

4.
Labelling experiments with [2-13C]- and [1,2-13C]acetate showed that both photopigments of Anacystis nidulans, chlorophyll a and phycocyanobilin, share a common biosynthetic pathway from glutamate. The fate of deuterium during these biosynthetic events was studied using [2-13C, 2-2H3]acetate as a precursor and determining the labelling pattern by 13C NMR spectroscopy with simultaneous [1H, 2H]-broadband decoupling. The loss of 2H (ca 20%) from the precursor occurred at an early stage during the tricarboxylic acid cycle. After formation of glutamate there was no further loss of 2H in the assembly of the cyclic tetrapyrrole intermediates or during decarboxylation and modification of the side-chains. Thus the labelling data support a divergence in the pathway to cyclic and linear tetrapyrroles after protoporphyrin IX.  相似文献   

5.
Summary Although indole-3-acetic acid (IAA) is a well-known plant hormone, the main IAA biosynthetic pathway from l-tryptophan (Trp) via indole-3-pyruvic acid (IPyA) has yet to be elucidated. Previous studies have suggested that IAA is produced by Enterobacter cloacae isolated from the rhizosphere of cucumbers and its biosynthetic pathway may possibly be the same as that in plants. To elucidate this pathway, the IAA biosynthetic gene was isolated from a genomic library of E. cloacae by assaying for the ability to convert Trp to IAA. DNA sequence analysis showed that this gene codes for only one enzyme and its predicted protein sequence has extensive homology with pyruvate decarboxylase in yeast and Zymomonas mobilis. Cell-free extracts prepared from Escherichia coli harboring this gene could convert IPyA to indole-3-acetaldehyde (IAAld). These results clearly show that this pathway is mediated only by indolepyruvate decarboxylase, which catalyzes the conversion of IPyA to IAAld.  相似文献   

6.
The advantage of using 13C-labelled glucose in metabolic studies is that it is an important carbon and energy source for almost all biotechnologically and medically important organisms. On the other hand, the disadvantage is its relatively high cost in the labelling experiments. Looking for cheaper alternatives we found that 13C-[2] acetate or 13C-[1,2] acetate is a prospective compound for such experiments. Acetate is well incorporated by many organisms, including mammalian and insect cell cultures as preferred source of acetyl-CoA. Our experimental results using 13C NMR demonstrated that acetate was efficiently incorporated into glutamate and alanine secreted by the insect cell culture. Using D-stat culture of Saccharomyces uvarum on glucose/13C-acetate mineral media we demonstrated that the labelling patterns of proteinogenic amino acids can be well predicted on the basis of specific substrate consumption rates using the modified scheme of yeast metabolism and stoichiometric modelling. According to this scheme aspartate and alanine in S. uvarum under the experimental conditions used is synthesised in the mitochondria. Synthesis of alanine in the mitochondria was also demonstrated for Spodoptera frugiperda. For both organisms malic enzyme was also operative. For S. uvarum it was shown that the activity of malic enzyme is sufficient for supporting the mitochondrial biosynthetic reactions with NADPH.  相似文献   

7.
Summary According to the biosynthetic pathway of pristinamycin, a rational selection procedure with u.v. mutation was performed to obtain a high pristinamycin-producing strain. Aminoacetic acid-resistant mutants (AAr), valine hydroxamate-resistant mutants (VHr), kitasamycin-resistant mutants (KTMr) and 2-deoxy-D-glucose-resistant mutants (DOGr) were selected, successively. A strain Streptomyces pristinaespiralis 12–55 with AAr, Valr, KTMr, and DOGr was obtained, and its production of pristinamycin reached 3000 u/ml which is 100 times higher than that of the parent strain S. pristinaespiralis ATCC 25486. It is inferred that S. pristinaespiralis 12–55 can alleviate catabolite repression caused by carbon sources, provide more acetic acid and valine for pristinamycin biosynthesis and increase its resistance to pristinamycin produced by itself, all of which are favorable for pristinamycin production. The subculture experiments indicated that the hereditary character of high productivity of S. pristinaespiralis 12–55 is stable. The pristinamycin production of S. pristinaespiralis 12–55 in a 15-l fermentor could reach 3010 u/ml after a 56 h batch fermentation.  相似文献   

8.
Radioactivity from [1-14C]riboflavin was incorporated into the 5,6-dimethylbenzimidazole moiety of Vitamin B12 in the aerobes Bacillus megaterium, Nocardia rugosa and Streptomyces sp. as well as in the aerotolerant anaerobe Propionibacterium freudenreichii, but not in the anaerobe Eubacterium limosum.As recently published for E. limosum, also in the anaerobe Clostridium barkeri radioactivity from [1-14C]glycine and [2-14C]glycine was found in the 5,6-dimethylbenzimidazole moiety, but not in the corrin moiety. The addition of l-[methyl-14C]methionine to C. barkeri led to the labeling of the corrin moiety and the 5,6-dimethylbenzimidazole moiety, showing that the seven extra methyl groups in the corrin ring as well as the two methyl groups of the base part originate from this precursor.In Clostridium thermoaceticum, forming the vitamin B12 analog 5-methoxybenzimidazolylcobamide, [1-14C]glycine and [2-14C]glycine were also incorporated into the 5-methoxybenzimidazole moiety, but not into the corrin ring.In E. limosum l-[U-14C]glutamate led to the labeling of the corrin ring of vitamin B12, but not of its base moiety.There results together with data from the literature indicate that a common biosynthetic pathway might exist for the corrinoid biosynthesis in aerobic microorganisms, and in those aerotolerant anaerobes like the Propionibacteria, which form the 5,6-dimethylbenzimidazole moiety of vitamin B12 only under aerobic conditions. They also show that this pathway differs from the pathway found in anaerobic bacteria.  相似文献   

9.
Lysine biosynthetic pathway enzymes of Bacillus brevis ATCC 1068 were studied as a function of stage of development (growth and sporulation). The synthesis of aspartic-2-eemialdehyde dehydrogenase (ASA-dehydrogenase), dihydrodipicolinate synthase (DHDPA-synthase), DHPA-reductase and diaminopimelate decarboxylase (DAP-decarboxylase) was found not to be co-regulated, since lysine was not a co-repressor for these enzymes. Unlike the aspartokinase isoenzymes, the other enzymes of the lysine pathway were not derepressed in thiosine-resistant, lysine-excreting mutants. Thus, the aspartokinase isoenzymes were the key enzymes during growth and regulation of lysine biosynthesis through restriction of l-ASA synthesis via feedback control by lysine on the aspartokinases was therefore suggested.In contrast to other Bacillus species, the levels of the lysine biosynthetic pathway enzymes of strain ATCC 10068 were not derepressed during the change from vegetative growth to sporulation. Two control mechanisms, enabling the observed preferential channelling of carbon for the synthesis of spore-specific diaminopimelic acid (DAP) and dipicolinic acid (DPA) were a) loss of DAP-decarboxylase, b) inhibition of DHDPA-reductase by DPA. Increase in the level of the DAP pool during sporulation, as a consequence of the loss of DAP-decarboxylase, and its relevance to the non-enzymatic formation of DPA has been discussed.Abbreviations l-ASA l-aspartic-2-semialdehyde - DAP diaminopimelic acid - DPA dipicolinic acid - DHDPA dihydrodipicolinate - AGM aspargine-glycerol medium - PY peptone-yeast extract - NB+NSM nutrient broth plus nutrient sporulation medium  相似文献   

10.
Conidiogenone, a diterpene with a unique structure, is known to induce the conidiation of Penicillium cyclopium. The biosynthetic pathway of (?)-conidiogenone has been fully elucidated by the heterologous expression of biosynthetic genes in Aspergillus oryzae and by in vitro enzyme assay with 13C-labeled substrates. After construction of deoxyconidiogenol by the action of bifunctional terpene synthase, one cytochrome P450 catalyzes two rounds of oxidation to furnish conidiogenone. Notably, similar biosynthetic genes are conserved among more than 10 Penicillium sp., suggesting that conidiogenone is a common conidiation inducer in this genus. The cyclization mechanism catalyzed by terpene synthase, which involves successive 1,2-alkyl shifts, was fully elucidated using 13C-labeled geranylgeranyl pyrophosphate (GGPP) as substrate. During the structural analysis of deoxyconidiogenol, we observed broadening of some of the 13C signals measured at room temperature, which has not been observed with other structurally related compounds. Careful examination using techniques including 13C NMR studies at ?80 °C, conformational analysis and prediction of the 13C chemical shifts using density functional theory gave insights into this intriguing phenomenon.  相似文献   

11.
Glutamine synthetase (EC 6.3.1.2) was purified to homogeneity from a free-living nitrogen fixing bacteria, Bacillus polymyxa. The holoenzyme, relative molecular mass (Mr) of 600 000 is composed of monomeric sub-units of 60 000 (Mr). The isoelectric point of the sub-units was 5.2. The pH optimum for the biosynthetic and transferase enzyme activity was 8.2 and 7.8, respectively. The apparent K m values (K m app ) in the biosynthetic reaction for glutamate, NH4Cl and ATP were 3.2, 0.22 and 1 mM, respectively. In the transferase reaction the K m values for glutamine, hydroxylamine and ADP were 6.5, 3.5 and 8×10-4 mM respectively. L-Methionine-D-L-sulfoximine was a very potent inhibitor in both biosynthetic and transferase reactions. Similar to most Gram positive bacteria there was no evidence of in vivo adenylylation and the enzyme seemed to be mainly regulated by feed-back mechanism.Abbreviations PMSF phenylmethylsulfonylfluoride - TCA trichloroacetic acid - GS glutamine synthetase - MSO L-Methionine-D-L-sulfoximine - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis - SVPDE snake venum phosphodiesterase  相似文献   

12.
The initial product of fixation of [13N]N2 by pure cultures of the reconstituted symbiotic association between Anthoceros punctatus L. and Nostoc sp. strain ac 7801 was ammonium; it accounted for 75% of the total radioactivity recovered in methanolic extracts after 0.5 min and 14% after 10 min of incubation. Glutamine and glutamate were the primary organic products synthesized from [13N]N2 after incubation times of 0.5–10 min. The kinetics of labeling of these two amino acids were characteristic of a precursor (glutamine) and product (glutamate) relationship. Results of inhibition experiments with methionine sulfoximine (MSX) and diazo-oxonorleucine were also consistent with the assimilation of N2-derived NH 4 + by Anthoceros-Nostoc through the sequential activities of glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.7.1), with little or no assimilation by glutamate dehydrogenase (EC 1.3.1.3). Isolated symbiotic Nostoc assimilated exogenous 13NH 4 + into glutamine and glutamate and their formation was inhibited by MSX, indicating operation of the glutamine synthetase-glutamate synthase (GS-GOGAT) pathway: However, relative to free-living cultures, isolated symbiotic Nostoc assimilated 80% less exogenous ammonium into glutamine and glutamate, implying that symbiotic Nostoc could assimilate only a fraction of N2-derived NH 4 + . This implication was tested by using Anthoceros associations reconstituted with wild-type or MSX-resistant strains of Nostoc incubated with [13N]N2 in the presence of MSX. The results of these experiments indicated that, in situ, symbiotic Nostoc assimilated about 10% of the N2-derived NH 4 + and that NH 4 + was made available to Anthoceros tissue where it was apparently assimilated by the GS-GOGAT pathway. Since less than 1% of the fixed N2 was lost to the suspension medium, it appears that transfer of NH 4 + from symbiont to host tissue was very efficient in this extracellular symbiotic association.Abbreviations DON 6-diazo-5-oxo-l-norleucine - GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSX l-methionine-dl-sulfoximine  相似文献   

13.
Two genes, orf6 and orf9 located in the L-oleandrose sugar biosynthetic gene cluster of Streptomyces antibioticus Tü99. NovU has been characterized as C-5 methyltrnaferase involved in noviose biosynthetic pathway. We have cloned and heterologously expressed the orf6, orf9, and novU genes in S. venezuelae YJ003-OTBP1. This established the function of orf6 and orf9 as 4-ketoreductase and 3-epimerase, respectively. All of analytical data of the noviosylated 10-deoxymethynolide also is in support of proving their functions. Furthermore biosynthetic pathway 5,5-gem-dimethyl-6-deoxyglucose (TDP-Lnoviose) has been proposed.  相似文献   

14.
d-Glucose and glycerol precursors randomly labelled with deuterium were prepared and used for the biosynthesis of bacterial cellulose by Acetobacter xylinum. The materials obtained were converted into triacetate derivatives and analysed by 250 MHz nuclear magnetic resonance.Labelling percentages on each position are reported. The weighted addition of combinations of different 2H or 1H sites for mixtures of multiple labelled compounds was performed by means of an N.M.R. spectrum simulation program according to different hypotheses. The nonrandom nature of the results showed the importance of exchange phenomena and of the biosynthetic pathways which take place during cellulose biosynthesis.While showing less favourable properties than 13C enrichment, deuterium labelling can nevertheless lead to significant results (in particular if one is dealing with labelled fragments of precursors incorporated partly or totally into a final molecule), particularly in view of the easy preparation of deuterated compounds by catalytic exchange.  相似文献   

15.
Doubly-labeled [3H, 14C]tyrosines, [1-13C-]tyramine or [2-14C]tyramine, administered to the stems of intact Papaver somniferum L. plants, were found to be incorporated into the morphinan alkaloids of the plant with comparable efficiency. 3H/14C ratios of alkaloids from plants fed the tyrosines were consistent with an almost equal conversion of this amino acid into the tetrahydroisoquinoline (TIQ) and benzyl-derived segments. Nuclear magnetic resonance (NMR) analyses of morphine isolated after administration of [1-13C]tyramine demonstrated selective labeling of C-16 of the alkaloid, indicating the conversion of this amine primarily into the TIQ-derived moiety. Morphine and thebaine labeled by [2-14C]tyramine were degraded to phenanthridines and N,N-dimethyl ethylamines. Of the total radioactivity in the alkaloids 97% was found to be associated with the ethylamines, a distribution consistent with the NMR data. This preferential utilization of tyramine in the biosynthesis of morphinan alkaloids can be explained by the compartmentalization of intermediates and enzymes of the pathway.Abbreviations L-dopa L-3,4-dihydroxyphenylalanine - HPLC high-pressure liquid chromatography - NMR nuelear magnetic resonance - TIQ tetrahydroisoquinoline  相似文献   

16.
Milbemycin antibiotics are produced by Streptomyces hygroscopicus subsp. aureolacrimosus and a newly isolated Streptomyces bingchenggensis, respectively. According to the biosynthetic pathway of milbemycins generated by S. hygroscopicus subsp. aureolacrimosus, a rational screening procedure with UV irradiation and N-methyl-N′-nitroso-N-nitrosoguanidine (NTG) mutation was performed to obtain high milbemycin-producing S. bingchenggensis. Aminoacetic acid (Glycine)-resistant mutants (AAr), propionate-resistant mutants (PRPr), streptomycin-resistant mutants (STRr) and 2-deoxy-d-glucose-resistant mutants (DOGr) were selected successively. A strain S. bingchenggensis BC-109-6 with AAr, PRPr, STRr and DOGr was obtained and its production of milbemycin A3 and A4 reached 1,450 μg/ml, which was 80% higher than that of the ancestral strain S. bingchenggensis BC-101-4. The subculture experiments indicated that the hereditary characteristic of high productivity of S. bingchenggensis BC-109-6 was stable. The production of milbemycin A3 and A4 by S. bingchenggensis BC-109-6 in a 50-l fermentor could reach 1,380 μg/ml after 360 h batch fermentation.  相似文献   

17.
Shigella species are characteristically nicotinic acid (NA) auxotrophs. The invasiveS. flexneri strain M90T, transformed with the multicopy plasmid pZT349 encoding thenadB gene ofSalmonella typhimurium, can grow in minimal glucose medium without exogenous NA, whereas, M90T containing the control vector, pUC18 does not, suggesting that this species lacksl-aspartic acid oxidase, the first enzyme in the de novo NAD biosynthetic pathway. The estimated growth rate of strain M90T (pZT349) in HeLa cells was identical to that of M90T (pUC18), indicating the available intracellular concentration of NA is not limiting for bacterial growth.  相似文献   

18.
Lundberg P  Lundquist PO 《Planta》2004,219(4):661-672
The primary nitrogen metabolism of the N2-fixing root nodule symbiosis Alnus incana (L.)–Frankia was investigated by 31P and 15N nuclear magnetic resonance (NMR) spectroscopy. Perfusion of root nodules in a pulse–chase approach with 15N- or 14N-labeled NH4+ revealed the presence of the amino acids alanine (Ala), -amino butyric acid, glutamine (Gln), glutamic acid (Glu), citrulline (Cit) and arginine (Arg). Labeling kinetics of the Gln amide-N and -amino acids suggested that the glutamine synthetase (GS; EC 6.3.1.2)–glutamate synthase (GOGAT; EC 1.4.1.13) pathway was active. Inhibition of the GS-catalyzed reaction by methionine sulphoximine abolished incorporation of 15N. Cit was labeled in all three N positions but most rapidly in the position, consistent with carbamoyl phosphate as the precursor to which Gln could be the amino donor catalyzed by carbamoyl phosphate synthase (CPS; EC 6.3.5.5). Ala biosynthesis occurred consistent with a flux of N in the sequence Gln–Glu–Ala. 31P NMR spectroscopy in vivo and of extracts revealed several metabolites and was used in connection with the 15N pulse–chase experiment to assess general metabolic status. Stable concentrations of ATP and UDP-glucose during extended perfusions showed that the overall root nodule metabolism appeared undisturbed throughout the experiments. The metabolic pathways suggested by the NMR results were confirmed by high activities of the enzymes GS, NADH-GOGAT and ornithine carbamoyltransferase (OCT; EC 2.1.3.3). We conclude that the primary pathway of NH4+ assimilation in A. incana root nodules occurs through the GS–GOGAT pathway. Biosynthesis of Cit through GS–CPS–OCT is important and is a link between the first amino acid Gln and this final transport and storage form of nitrogen.Abbreviations AlaDH l-Alanine dehydrogenase - Cit Citrulline - CPS Carbamoyl phosphate synthase - GABA -Amino butyric acid - GOGAT Glutamate synthase - GS Glutamine synthetase - MDH Malate dehydrogenase - MSO Methionine sulphoximine - NMR Nuclear magnetic resonance - OCT Ornithine carbamoyltransferase - PEPC Phosphoenolpyruvate decarboxylase - UDPGlc Uridine 5-diphosphoglucose  相似文献   

19.
Whole cells of Desulfobulbus propionicus fermented [1-13C]ethanol to [2-13C] and [3-13C]propionate and [1-13C]-acetate, which indicates the involvement of a randomizing pathway in the formation of propionate. Cell-free extracts prepared from cells grown on lactate (without sulfate) contained high activities of methylmalonyl-CoA: pyruvate transacetylase, acetase kinase and reasonably high activities of NAD(P)-independent L(+)-lactate dehydrogenase NAD(P)-independent pyruvate dehydrogenase, phosphotransacetylase, acetate kinase and reasonably high activity of NAD(P)-independent L(+)-lactate dehydrogenase, fumarate reductase and succinate dehydrogenase. Cell-free extracts catalyzed the conversion of succinate to propionate in the presence of pyruvate, CoA and ATP and the oxaloacetate-dependent conversion of propionate to succinate. After growth on lactate or propionate in the presence of sulfate similar enzyme levels were found except for fumarate reductase which was considerably lower. Fermentative growth on lactate led to higher cytochrome b contents than growth with sulfate as electron acceptor.The labeling studies and the enzyme measurements demonstrate that in Desulfobulbus propionate is formed via a succinate pathway involving a transcarboxylase like in Propionibacterium. The same pathway may be used for the degradation of propionate to acetate in the presence of sulfate.Abbreviations DCPIP 2,6-dichlorophenolindophenol - PEP phosphoenolpyruvate  相似文献   

20.
Thalli of Evernia prunastri floated on 40 mM urea synthesize urease (EC3.5.1.5) which is, in part, retained in the cells as well as secreted into the external medium. By using [14C]urea, it has been shown that the 14CO2 evolved by the action of urease is mainly incorporated into phenolic compounds. Evernic acid has the highest radioactivity when incubations are carried out in the light. The orsellinate moiety of this molecule contains ten times more radioactivity than the everninic acid moiety. This could be explained by the assumption that orsellinic acid is the first product of cyclisation of the polyketide chain in the biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号