首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wi SG  Chung BY  Lee YG  Yang DJ  Bae HJ 《Bioresource technology》2011,102(10):5788-5793
The objective of this study was to find a pretreatment process that enhances enzymatic conversion of biomass to sugars. Rapeseed straw was pretreated by two processes: a wet process involving wet milling plus a popping treatment, and a dry process involving popping plus dry milling. The effects of the pretreatments were studied both in terms of structural and compositional changes and change in susceptibility to enzymatic hydrolysis. After application of the wet and dry processes, the amounts of cellulose and xylose in the straw were 37-38% and 14-15%, respectively, compared to 31% and 12% in untreated counterparts. In enzymatic hydrolysis performance, the wet process presented the best glucose yield, with a 93.1% conversion, while the dry process yielded 69.6%, and the un-pretreated process yielded <20%. Electron microscopic studies of the straw also showed a relative increase in susceptibility to enzymatic hydrolysis with pretreatment.  相似文献   

2.
The objective of the research was to investigate the effect of biomass loading, alkali (NaOH) concentration and pre-treatment time on the yield of glucose obtained following alkaline pre-treatment and enzymatic hydrolysis of oilseed rape (OSR) straw. A maximum glucose yield of (440.6 ± 14.9) g glucose kg−1 biomass was obtained when OSR straw was pre-treated at a biomass loading of 50 g kg−1 and an alkali concentration of 0.63 mol dm−3 NaOH for 30 min. The energy efficiency of glucose extraction (0.39 kg glucose MJ−1 consumed) was highest when OSR straw was pre-treated at a biomass loading of 50 g kg−1 and an alkali concentration of 0.63 or 0.75 mol dm−3 for 30 min. The study demonstrated alkaline pre-treatment of OSR straw is superior to acid pre-treatment in terms of glucose yield and energy efficiency.  相似文献   

3.
Abstract

Mild alkaline pretreatment was evaluated as a strategy for effective lignin removal and hydrolysis of rice straw. The pretreatment efficiency of different NaOH concentrations (0.5, 1.0, 1.5 or 2.0% w/w) was assessed. Rice straw (RS) pretreated with 1.5% NaOH achieved better sugar yield compared to other concentrations used. A cellulose conversion efficiency of 91% (45.84?mg/ml glucose release) was attained from 1.5% NaOH pretreated rice straw (PRS), whereas 1% NaOH pretreated rice straw yielded 35.10?mg/ml of glucose corresponding to a cellulose conversion efficiency of 73.81%. The ethanol production from 1% and 1.5% NaOH pretreated RS hydrolysates was similar at ~3.3% (w/v), corresponding to a fermentation efficiency of 86%. The non-detoxified hydrolysate was fermented using the novel yeast strain Saccharomyces cerevisiae RPP-03O without any additional supplementation of nutrients.  相似文献   

4.
Jeong TS  Oh KK 《Bioresource technology》2011,102(19):9261-9266
Operational conditions for the hydrolysis of rape straw were optimized using the combined severity index (CS), which combines the effects of time, temperature, and acid concentration into a single parameter. The sugar recovery yield was 77.8% of the theoretical yield at a value of CS=1.3. A maximum concentration of xylose of 7.22 g/L was obtained when the straw was treated for 10 min at a low reaction temperature (150 °C) and high acid concentration (pH 1.17). The pentose-rich hydrolyzate exhibited a low concentration of fermentation-inhibiting compounds. The concept of CS can be conveniently and effectively applied for optimization of pretreatments.  相似文献   

5.
The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm?1 due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g?1 and 0.379 g g?1, respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g?1 and 0.358 g g?1, respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.  相似文献   

6.
A simple process (the direct-saccharification-of-culms (DiSC) process) to produce ethanol from rice straw culms, accumulating significant amounts of soft carbohydrates (SCs: glucose, fructose, sucrose, starch and β-1,3-1,4-glucan) was developed. This study focused on fully mature culms of cv. Leafstar, containing 69.2% (w/w of dried culms) hexoses from SCs and cellulose. Commercially-available wind-separation equipment successfully prepared a culm-rich fraction with a SC recovery of 83.1% (w/w) from rice straw flakes (54.1% of total weight of rice straw). The fraction was suspended in water (20%, w/w) for starch liquefaction, and the suspension was subjected to a simultaneous saccharification and fermentation with yeast, yielding 5.6% (w/v) ethanol (86% of the theoretical yield from whole hexoses in the fraction) after 24 h fermentation. Thus, the DiSC process produced highly-concentrated ethanol from rice straw in a one vat process without any harsh thermo-chemical pretreatments.  相似文献   

7.
In this work we compared the efficiency of a laccase treatment performed on steam-exploded wheat straw pretreated under soft conditions (water impregnation) or harsh conditions (impregnation with diluted acid). The effect of several enzymatic treatment parameters (pH, time of incubation, laccase origin and loading) was analysed. The results obtained indicated that severity conditions applied during steam explosion have an influence on the efficiency of detoxification. A reduction of the toxic effect of phenolic compounds by laccase polymerization of free phenols was demonstrated. Laccase treatment of steam-exploded wheat straw reduced sugar recovery after enzymatic hydrolysis, and it should be better performed after hydrolysis with cellulases. The fermentability of hydrolysates was greatly improved by the laccase treatment in all the samples. Our results demonstrate the action of phenolic compounds as fermentation inhibitors, and the advantages of a laccase treatment to increase the ethanol production from steam-exploded wheat straw.  相似文献   

8.
Rice straw has recently attracted interest in Japan as a potential source of raw material for ethanol production. Wet disk milling, a continuous pretreatment to enhance the enzymatic digestibility of rice straw, was compared with conventional ball milling and hot-compressed water treatment. Pretreated rice straw was evaluated by enzymatic hydrolysis using Acremonium cellulase and characterized by X-ray diffraction and scanning electron microscopy. Glucose and xylose yields by wet disk milling, ball milling, and hot-compressed water treatment were 78.5% and 41.5%, 89.4% and 54.3%, and 70.3% and 88.6%, respectively. Wet disk milling and hot-compressed water treatment increased sugar yields without decreasing their crystallinity. The feature size of the wet disk milled rice straw was similar to that of hot-compressed water-treated rice straw. The energy consumption of wet disk milling was lower than that of other pretreatments. Thus, wet disk milling is an economical, practical pretreatment for the enzymatic hydrolysis of lignocellulosic biomass, especially herbaceous biomass such as rice straw.  相似文献   

9.
Pretreatment of lignocellulosic residues like water hyacinth (WH) and wheat straw (WS) using crude glycerol (CG) and ionic liquids (IL) pretreatment was evaluated and compared with conventional dilute acid pretreatment (DAT) in terms of enzymatic hydrolysis yield and fermentation yield of pretreated samples. In the case of WS, 1-butyl-3-methylimidazolium acetate pretreatment was found to be the best method. The hydrolysis yields of glucose and total reducing sugars were 2.1 and 3.3 times respectively higher by IL pretreatment than DAT, while it was 1.4 and 1.9 times respectively higher with CG pretreatment. For WH sample, CG pretreatment was as effective as DAT and more effective than IL pretreatment regarding hydrolysis yield. The fermentation inhibition was not noticeable with both types of pretreatment methods and feedstocks. Besides, CG pretreatment was found as effective as pure glycerol pretreatment for both feedstocks. This opens up an attractive economic route for the utilization of CG.  相似文献   

10.
In this study, the production of sugar monomers from sugarcane bagasse (SCB) by sono-assisted acid hydrolysis was performed. The SCB was subjected to sono-assisted alkaline pretreatment. The cellulose and hemicellulose recovery observed in the solid content was 99% and 78.95%, respectively and lignin removal observed during the pretreatment was about 75.44%. The solid content obtained was subjected to sono-assisted acid hydrolysis. Under optimized conditions, the maximum hexose and pentose yield observed was 69.06% and 81.35% of theoretical yield, respectively. The hydrolysate obtained was found to contain very less inhibitors, which improved the bioethanol production and the ethanol yield observed was 0.17 g/g of pretreated SCB.  相似文献   

11.
The aim of this work was to study the feasibility of using sugarcane tops as feedstock for the production of bioethanol. The process involved the pretreatment using acid followed by enzymatic saccharification using cellulases and the process was optimized for various parameters such as biomass loading, enzyme loading, surfactant concentration and incubation time using Box–Behnken design. Under optimum hydrolysis conditions, 0.685 g/g of reducing sugar was produced per gram of pretreated biomass. The fermentation of the hydrolyzate using Saccharomyces cerevisae produced 11.365 g/L of bioethanol with an efficiency of about 50%. This is the first report on utilization of sugarcane tops for bioethanol production.  相似文献   

12.
The potential of a fungal pretreatment combined with a mild alkali treatment to replace or complement current physico-chemical methods for ethanol production from wheat straw has been investigated. Changes in substrate composition, secretion of ligninolytic enzymes, enzymatic hydrolysis efficiency and ethanol yield after 7, 14 and 21 days of solid-state fermentation were evaluated. Most fungi degraded lignin with variable selectivity degrees, although only eight of them improved sugar recovery compared to untreated samples. Glucose yield after 21 days of pretreatment with Poria subvermispora and Irpex lacteus reached 69% and 66% of cellulose available in the wheat straw, respectively, with an ethanol yield of 62% in both cases. Conversions from glucose to ethanol reached around 90%, showing that no inhibitors were generated during this pretreatment. No close correlations were found between ligninolytic enzymes production and sugar yields.  相似文献   

13.
Key technologies for bioethanol production from lignocellulose   总被引:1,自引:0,他引:1  
Controversies on bioethanol produced from straw mainly revolve around the unfitted economical feasibility and environmental concerns of the process, which attribute mainly to unilateral researches from own specialties of each scholar without regard to the characteristics of the straws themselves. To achieve an economical and environmentally-friendly system of bioethanol production from straw, a number of breakthroughs are needed, not only in individual process steps, but also in the balance and combination of these processes. This article gives an overview of the new technologies required and the advances achieved in recent years, especial progresses achieved in our group, based on the concept of fractional conversions. An eco-industrial multi-production pattern is established, by which the maximum efficacy and benefit of process can be achieved due to the production of many high-value co-products simultaneously with ethanol. We believed that, in the future, the bioethanol production from straw will be competitive economically and environmentally.  相似文献   

14.
A central composite design of response surface method was used to optimize H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw, in respect to acid concentration (0.5–2%), treatment time (5–20 min) and solid content (10–20%) at 180 °C. Enzymatic hydrolysis and fermentation were also measured to evaluate the optimal pretreatment conditions for maximizing ethanol production. The results showed that acid concentration and treatment time were more significant than solid content for optimization of xylose release and cellulose recovery. Pretreatment with 1% sulfuric acid and 20% solid content for 10 min at 180 °C was found to be the most optimal condition for pretreatment of rapeseed straw for ethanol production. After pretreatment at the optimal condition and enzymatic hydrolysis, 75.12% total xylan and 63.17% total glucan were converted to xylose and glucose, respectively. Finally, 66.79% of theoretical ethanol yielded after fermentation.  相似文献   

15.
The use of lignocellulosic raw materials in bioethanol production has been intensively investigated in recent years. However, for efficient conversion to ethanol, many pretreatment steps are required prior to hydrolysis and fermentation. Coffee stands out as the most important agricultural product in Brazil and wastes such as pulp and coffee husk are generated during the wet and dry processing to obtain green grains, respectively. This work focused on the optimization of alkaline pretreatment of coffee pulp with the aim of making its use in the alcoholic fermentation. A central composite rotatable design was used with three independent variables: sodium hydroxide and calcium hydroxide concentrations and alkaline pretreatment time, totaling 17 experiments. After alkaline pretreatment the concentration of cellulose, hemicellulose, and lignin remaining in the material, the subsequent hydrolysis of the cellulose component and its fermentation of substrate were evaluated. The results indicated that pretreatment using 4% (w/v) sodium hydroxide solution, with no calcium hydroxide, and 25 min treatment time gave the best results (69.18% cellulose remaining, 44.15% hemicelluloses remaining, 25.19% lignin remaining, 38.13 g/L of reducing sugars, and 27.02 g/L of glucose) and produced 13.66 g/L of ethanol with a yield of 0.4 g ethanol/g glucose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:451–462, 2014  相似文献   

16.
The potential of wheat straw hydrolysate for biogas production was investigated in continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge bed (UASB) reactors. The hydrolysate originated as a side stream from a pilot plant pretreating wheat straw hydrothermally (195 °C for 10–12 min) for producing 2nd generation bioethanol [Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology 100 (9), 2562–2568]. Results from batch assays showed that hydrolysate had a methane potential of 384 ml/g-volatile solids (VS)added. Process performance in CTSR and UASB reactors was investigated by varying hydrolysate concentration and/or organic loading rate (OLR). In CSTR, methane yields increased with increase in hydrolysate concentration and maximum yield of 297 ml/g-COD was obtained at an OLR of 1.9 g-COD/l d and 100% (v/v) hydrolysate. On the other hand, process performance and methane yields in UASB were affected by OLR and/or substrate concentration. Maximum methane yields of 267 ml/g-COD (COD removal of 72%) was obtained in UASB reactor when operated at an OLR of 2.8 g-COD/l d but with only 10% (v/v) hydrolysate. However, co-digestion of hydrolysate with pig manure (1:3 v/v ratio) improved the process performance and resulted in methane yield of 219 ml/g-COD (COD removal of 72%). Thus, anaerobic digestion of hydrolysate for biogas production was feasible in both CSTR and UASB reactor types. However, biogas process was affected by the reactor type and operating conditions.  相似文献   

17.
By employing metal salts in dilute-acid pretreatment the severity can be reduced due to reduced activation energy. This study reports on a dilute-acid steam pretreatment of spruce chips by addition of a small amount of ferrous sulfate to the acid catalyst, i.e., either SO2, H2SO3 or H2SO4. The utilization of ferrous sulfate resulted in a slightly increased overall glucose yield (from 74% to 78% of the theoretical value) in pretreatment with SO2 and H2SO3. Impregnation with ferrous sulfate and sulfuric acid did not give any improvement compared with pretreatment based solely on H2SO4.  相似文献   

18.
Briquetting of plant biomass with low bulk density is an advantage for handling, transport, and storage of the material, and heating of the biomass prior to the briquetting facilitates the densification process and improves the physical properties of the briquettes. This study investigates the effects of preheating prior to briquetting of wheat straw (WS) on subsequent hydrothermal pretreatment and enzymatic conversion to fermentable sugars. WS (11% moisture content) was densified to briquettes under different conditions; without preheating or with preheating at 75 or 125°C for either 5 or 10 min. Subsequent hydrothermal pretreatment was done for both un-briquetted WS and for briquettes. Enzymatic saccharification was afterwards performed for all samples. The results showed that as expected, nonpretreated WS briquettes gave very low sugar yields (22–29% of the cellulose content), even though preheating at 125°C prior to briquetting (without pretreatment) improved sugar yields somewhat. When combined with pretreatment, briquetting with preheating showed neutral or negative effects on sugar yield. This result suggests that moderate preheating (75°C for 5 min) before briquetting improved bulk density and compressive resistance of briquettes without impeding subsequent enzymatic conversion. However, excessive preheating (75 or 125°C for 10 min) before briquetting may result in irreversible structural modifications that hinder the interaction between biomass and water during pretreatment, thereby decreasing the accessibility of cellulose to enzymatic saccharification.  相似文献   

19.
The present study investigates the operational conditions for organosolvent pretreatment and hydrolysis of rice straw. Among the different organic acids and organic solvents tested, acetone was found to be most effective based on the fermentable sugar yield. Optimization of process parameters for acetone pretreatment were carried out. The structural changes before and after pretreatment were investigated by scanning electron microscopy, X-ray diffraction and Fourier transform infrared (FTIR) analysis. The X-ray diffraction profile showed that the degree of crystallinity was higher for acetone pretreated biomass than that of the native. FTIR spectrum also exhibited significant difference between the native and pretreated samples. Under optimum pretreatment conditions 0.458 g of reducing sugar was produced per gram of pretreated biomass with a fermentation efficiency of 39%. Optimization of process parameters for hydrolysis such as biomass loading, enzyme loading, surfactant concentration and incubation time was done using Box–Benhken design. The results indicate that acetone pretreated rice straw can be used as a good feed stock for bioethanol production.  相似文献   

20.
The objective of this study was to determine the effectiveness of different organic acids (maleic, succinic, and oxalic acid) on enzymatic hydrolysis and fermentation yields of wheat straw. It was also aimed to optimize the process conditions (temperature, acid concentration, and pretreatment time) by using response surface methodology (RSM). In line with this objective, the wheat straw samples were pretreated at three different temperatures (170, 190, and 210°C), acid concentrations (1%, 3%, and 5%) and pretreatment time (10, 20, and 30 min). The findings show that at extreme pretreatment conditions, xylose was solubilized in liquid phase, causing an increase in cellulose and lignin content of biomass. Enzymatic hydrolysis experiments revealed that maleic and oxalic acids were quite effective at achieving high sugar yields (>90%) from wheat straw. In contrast, the highest sugar yields were 50–60%, when the samples were pretreated with succinic acid, indicating that succinic acid was not as effective. The optimum process conditions for maleic acid were, 210°C, 1.08% acid concentration, and 19.8 min; for succinic acid 210°C, 5% acid concentration, and 30 min; for oxalic acid 210°C, 3.6% acid concentration, and 16.3 min. The ethanol yields obtained at optimum conditions were 80, 79, and 59% for maleic, oxalic and succinic acid, respectively. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1487–1493, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号