首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fate of glycerol trinitrate when exposed to microbial attack has been investigated. Contrary to some earlier reports, this compound was readily biodegraded by employing batch or continuous techniques under a variety of cultural conditions. Breakdown of glycerol trinitrate took place stepwise via the dinitrate and mononitrate isomers, with each succeeding step proceeding at a slower rate. After a residence time of 8 to 15 h, none of the glycerol nitrates could be detected in the effluent from a continuous-culture apparatus (chemostat) supplied with an influent containing 30 mg of glycerol trinitrate per liter.  相似文献   

2.
Bacteria capable of metabolizing highly explosive and vasodilatory glycerol trinitrate (GTN) were isolated under aerobic and nitrogen-limiting conditions from soil, river water, and activated sewage sludge. One of these strains (from sewage sludge) chosen for further study was identified as Agrobacterium radiobacter subgroup B. A combination of high-pressure liquid chromatography and nuclear magnetic resonance analyses of the culture medium during the growth of A. radiobacter on basal salts-glycerol-GTN medium showed the sequential conversion of GTN to glycerol dinitrates and glycerol mononitrates. Isomeric glycerol 1,2-dinitrate and glycerol 1,3-dinitrate were produced simultaneously and concomitantly with the disappearance of GTN, with significant regioselectivity for the production of the 1,3-dinitrate. Dinitrates were further degraded to glycerol 1- and 2-mononitrates, but mononitrates were not biodegraded. Cells were also capable of metabolizing pentaerythritol tetranitrate, probably to its trinitrate and dinitrate analogs. Extracts of broth-grown cells contained an enzyme which in the presence of added NADH converted GTN stoichiometrically to nitrite and the mixture of glycerol dinitrates. The specific activity of this enzyme was increased 160-fold by growth on GTN as the sole source of nitrogen.  相似文献   

3.
Biodegradation of Glycidol and Glycidyl Nitrate   总被引:2,自引:2,他引:0       下载免费PDF全文
When calcium hydroxide is used to desensitize glycerol trinitrate (nitroglycerine)-containing waste streams, the epoxides glycidol and glycidyl nitrate are formed. The epoxide rings of both compounds are unstable to heat in aqueous solutions, and they open to form glycerol 1-mononitrate and presumably glycerol. These transformations were accelerated by microbial activity. Glycerol 1-mononitrate was slowly denitrated to form glycerol. Glycidol and glycidyl nitrate caused base-pair substitutions in the Ames test for mutagenicity, whereas glycerol 1-mononitrate tests were negative.  相似文献   

4.
A number of microorganisms were selected from soil and sediment samples which were known to have been previously exposed to nitrate ester contaminants. The two most effective bacteria for transforming glycerol trinitrate (GTN) were identified as Bacillus thuringiensis/cereus and Enterobacter agglomerans. For both isolates, denitration activities were expressed constitutively and GTN was not required for induction. Dialysis of cell extracts from both isolates did not affect denitration, which indicates that dissociable and depletable cofactors are not required for denitration. With thin-layer chromatography and high-performance liquid chromatography, the denitration pathway for both isolates was shown to be a sequential denitration of GTN to glycerol dinitrate isomers, glycerol mononitrate isomers, and ultimately to glycerol. GTN was observed to be completely converted to glycerol during a long-term incubation of cell extracts.  相似文献   

5.
A specific, sensitive and accurate quantitation method for glyceryl trinitrate was developed using gas chromatography—negative ion chemical ionization—selected ion monitoring with dichloromethane as a reagent gas. [15N3] and [2H5, 15N3] variants were synthesized from non-labelled or [2H8]glycerol and [15N]nitric acid. The former variant was used for preventing adsorption of glyceryl trinitrate onto active sites on column materials and the latter was used as an internal standard for quantitation of glyceryl trinitrate in biological fluids by selected ion monitoring. The quantitation limit of this method is 0.1 ng/ml of human plasma. When glyceryl trinitrate was administered intravenously in the dose of 4 μg/kg to patients receiving hypotensive anesthesia for surgical operation, the plasma levels exhibited a biexponential decay. The mean and standard deviation of half-lives of the α and β phases were found to be about 0.41 ± 0.13 and 5.34 ± 1.60 min, respectively.  相似文献   

6.
Four axenic bacterial species capable of biodegrading nitroglycerin (glycerol trinitrate [GTN]) were isolated from soil samples taken from a washwater soakaway at a disused GTN manufacturing plant. The isolates were identified by 16S rRNA gene sequence homology as Pseudomonas putida, an Arthrobacter species, a Klebsiella species, and a Rhodococcus species. Each of the isolates utilized GTN as its sole nitrogen source and removed nitro groups sequentially from GTN to produce glycerol dinitrates and mononitrates (GMN), with the exception of the Arthrobacter strain, which achieved removal of only the first nitro group within the time course of the experiment. The Klebsiella strain exhibited a distinct preference for removal of the central nitro group from GTN, while the other five strains exhibited no such regioselectivity. All strains which removed a second nitro group from glycerol 1,2-dinitrate showed regiospecific removal of the end nitro group, thereby producing glycerol 2-mononitrate. Most significant was the finding that the Rhodococcus species was capable of removing the final nitro group from GMN and thus achieved complete biodegradation of GTN. Such complete denitration of GTN has previously been shown only in mixed bacterial populations and in cultures of Penicillium corylophilum Dierckx supplemented with an additional carbon and nitrogen source. Hence, to the best of our knowledge, this is the first report of a microorganism that can achieve complete denitration of GTN.  相似文献   

7.
Recent evidence supports the hypothesis that the mechanism by which glyceryl trinitrate induces relaxation of vascular smooth muscle involves the biotransformation of glyceryl trinitrate. This study was conducted to determine if there was a direct correlation between the capacity of vascular smooth muscle preparations to biotransform glyceryl trinitrate and their sensitivity to the relaxant effect of this organic nitrate. Isolated bovine pulmonary arteries and veins were contracted submaximally and cumulative dose-response relationships to glyceryl trinitrate were obtained; the vein was approximately 10 times more sensitive than the artery to glyceryl trinitrate induced relaxation. In a separate series of experiments, these vascular tissues were contracted submaximally and incubated with 0.5 microM [14C]glyceryl trinitrate for 2 min, during which glyceryl trinitrate induced relaxation was monitored. At 2 min, tissue samples were taken for determination of glyceryl trinitrate and glyceryl-1,2- and 1,3-dinitrate content by thin-layer chromatography and liquid scintillation spectrometry. Biotransformation of glyceryl trinitrate to glyceryl dinitrate occurred concomitantly with relaxation of these blood vessels. The concentration of glyceryl dinitrate in the vein was significantly less than that in the artery (p less than or equal to 0.05), even though significantly greater relaxation of the vein than the artery was observed (p less than or equal to 0.05). From these data, a simple linear relationship between glyceryl trinitrate biotransformation and relaxation is not apparent.  相似文献   

8.
Four axenic bacterial species capable of biodegrading nitroglycerin (glycerol trinitrate [GTN]) were isolated from soil samples taken from a washwater soakaway at a disused GTN manufacturing plant. The isolates were identified by 16S rRNA gene sequence homology as Pseudomonas putida, an Arthrobacter species, a Klebsiella species, and a Rhodococcus species. Each of the isolates utilized GTN as its sole nitrogen source and removed nitro groups sequentially from GTN to produce glycerol dinitrates and mononitrates (GMN), with the exception of the Arthrobacter strain, which achieved removal of only the first nitro group within the time course of the experiment. The Klebsiella strain exhibited a distinct preference for removal of the central nitro group from GTN, while the other five strains exhibited no such regioselectivity. All strains which removed a second nitro group from glycerol 1,2-dinitrate showed regiospecific removal of the end nitro group, thereby producing glycerol 2-mononitrate. Most significant was the finding that the Rhodococcus species was capable of removing the final nitro group from GMN and thus achieved complete biodegradation of GTN. Such complete denitration of GTN has previously been shown only in mixed bacterial populations and in cultures of Penicillium corylophilum Dierckx supplemented with an additional carbon and nitrogen source. Hence, to the best of our knowledge, this is the first report of a microorganism that can achieve complete denitration of GTN.  相似文献   

9.
The effects of different vasomodulators on lactate release by the constant-flow-perfused rat hindlimb were examined and compared with that by perfused mesenteric artery, incubated preparations of aortas, soleus and epitrochlearis muscles, and perifused soleus muscles. Infusion of vasopressin (0.5 nM), angiotensin II (5 nM), norepinephrine (50 nM), and methoxamine (10 microM) into the hindlimbs of 180- to 200-g rats increased the perfusion pressure by 112-167% from 30.4 +/- 0.8 mmHg, O2 consumption by 26-68% from 6.4 +/- 0.2 mumol.g-1 x h-1, and lactate efflux by 148-380% from 5.41 +/- 0.25 mumol.g-1 x h-1. Hindlimbs of 100- to 120-g rats responded similarly to angiotensin II. Isoproterenol (1 microM) had no effect on O2 uptake or perfusion pressure but increased lactate release by 118%. Nitroprusside (0.5 mM) markedly inhibited the vasoconstrictor-mediated increases in lactate release, perfusion pressure, and O2 consumption by the hindlimb but had no effect on isoproterenol-mediated lactate efflux. Serotonin (6.7 microM) increased lactate release from the perfused mesenteric artery by 120% from 5.48 mol.g-1 x h-1. Lactate release by incubated aorta was increased by angiotensin II (50 nM), isoproterenol (1 microM), and mechanical stretch. The increase mediated by angiotensin II was blocked by glycerol trinitrate (2.2 microM), which had no effect on lactate release by isoproterenol. Neither angiotensin II (5 nM) nor vasopressin (0.5 nM) increased lactate release from incubated soleus and epitrochlearis muscles; however, lactate release was increased by isoproterenol, and this increase was unaffected by glycerol trinitrate (2.2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Various microorganisms have been evaluated for their ability to hydrolyze glyceryl trinitrate (GTN) to glyceryl dinitrates and mononitrates. Provided that the GTN extracellular concentration was under the lethal dose, metabolite formation and regioselectivity depend on the nature of the strain used. In particular, Phanerochaete chrysosporium at a sublethal dose (3 mM) converts GTN into 1,2-glyceryl dinitrate and 2-glyceryl mononitrate (2-GMN) with a 80% regioselectivity in both steps. This bioconversion, when carried out in fermentors at 28 degrees C, allowed formation of 2-GMN at a rate of 12 mumol/h/g of dried mycelium. Successive batches of 3 mM GTN could be converted into 2-GMN as long as consecutive additions of glycerol or glucose were effected to ensure cell survival and the efficiency of the enzymatic system involved.  相似文献   

11.
Glycerol trinitrate reductase (NerA) from Agrobacterium radiobacter, a member of the old yellow enzyme (OYE) family of oxidoreductases, was expressed in and purified from Escherichia coli. Denaturation of pure enzyme liberated flavin mononucleotide (FMN), and spectra of NerA during reduction and reoxidation confirmed its catalytic involvement. Binding of FMN to apoenzyme to form the holoenzyme occurred with a dissociation constant of ca. 10(-7) M and with restoration of activity. The NerA-dependent reduction of glycerol trinitrate (GTN; nitroglycerin) by NADH followed ping-pong kinetics. A structural model of NerA based on the known coordinates of OYE showed that His-178, Asn-181, and Tyr-183 were close to FMN in the active site. The NerA mutation H178A produced mutant protein with bound FMN but no activity toward GTN. The N181A mutation produced protein that did not bind FMN and was isolated in partly degraded form. The mutation Y183F produced active protein with the same k(cat) as that of wild-type enzyme but with altered K(m) values for GTN and NADH, indicating a role for this residue in substrate binding. Correlation of the ratio of K(m)(GTN) to K(m)(NAD(P)H), with sequence differences for NerA and several other members of the OYE family of oxidoreductases that reduce GTN, indicated that Asn-181 and a second Asn-238 that lies close to Tyr-183 in the NerA model structure may influence substrate specificity.  相似文献   

12.
Nitric oxide (NO) acts as an autacoid molecule that diffuses from its endothelial production site to the neighboring muscular cells. NO-donors are often used to mimic the physiological effects of NO in biological systems. Organic nitrates are commonly used as NO-donors; the most popular, glycerol trinitrate (GTN), has been used in therapy for more than a century. Carnitine nitrates have been synthesized using an endogenous non-toxic molecule: (L)-carnitine. The biotransformation of carnitine nitro-derivatives in biological fluids (saliva and blood plasma) and in red blood cells (RBC) has been monitored by an electrochemical assay and the interaction of carnitine nitrates with the plasma membrane carnitine transporter has been investigated. Differences in the way carnitine nitro-derivatives are metabolized in biological fluids and cells and transported by OCTN2 transporter are modulated by the chemical structures and by the length of the acyl template which carries the nitro-group.  相似文献   

13.
Plants offer many advantages over bacteria as agents for bioremediation; however, they typically lack the degradative capabilities of specially selected bacterial strains. Transgenic plants expressing microbial degradative enzymes could combine the advantages of both systems. To investigate this possibility in the context of bioremediation of explosive residues, we generated transgenic tobacco plants expressing pentaerythritol tetranitrate reductase, an enzyme derived from an explosive-degrading bacterium that enables degradation of nitrate ester and nitroaromatic explosives. Seeds from transgenic plants were able to germinate and grow in the presence of 1 mM glycerol trinitrate (GTN) or 0.05 mM trinitrotoluene, at concentrations that inhibited germination and growth of wild-type seeds. Transgenic seedlings grown in liquid medium with 1 mM GTN showed more rapid and complete denitration of GTN than wild-type seedlings. This example suggests that transgenic plants expressing microbial degradative genes may provide a generally applicable strategy for bioremediation of organic pollutants in soil.  相似文献   

14.
Nitric oxide (NO) formation in the liver and blood of the mouse following intraperitoneal treatment with nitroglycerin (glycerol trinitrate, GTN) was determined using electron spin resonance (ESR) spectroscopy. ESR signals of heme-NO complexes were detected at maximum levels within 5 min in the liver, but increased to a maximum level about 15-30 min later in the blood. GTN is not metabolized to release NO in vitro in the blood of the mouse. The hepatic microsomes which showed the heme-NO complexes ESR signals were incubated with mouse erythrocytes, with the result that a hemoglobin-NO signal was obtained from the erythrocytes. The activities of microsomal cytochrome P-450, the hepatic level of glutathione, and the reduction rate of nitroxide radicals in the in vivo liver, measured using L-band ESR spectroscopy, were temporarily decreased following GTN administration. In conclusion, NO in the liver could be scavenged by circulating erythrocytes, which might minimize NO-induced liver damage.  相似文献   

15.
具有良好信度和效度的动物模型是从实验室到临床转译研究成功的保证,为进一步应用硝酸甘油(glycerol trinitrate,GTN)偏头痛大鼠模型,对其信度和效度进行评价。效度包括表面效度、建构效度、标准关联效度。衡量表面效度的标准是症状同源性。GTN偏头痛大鼠模型行为学表现与人类偏头痛有一定的相似性。建构效度主要指动物模型对理论假说的解释度,GTN模型复制了偏头痛的神经源性炎症及痛觉增敏,具有较好的建构效度。标准关联效度即预测效度主要表现为药理学反应及其在临床的干预实验。GTN模型对典型抗偏头痛药物麦角胺的反应较敏感,但是该模型的预测力效度仍未有效建立。GTN偏头痛大鼠在不同的地区、不同的实验室均已成功复制,表明其有较好的信度。  相似文献   

16.
To determine whether cigarette smoking interferes with the medical management of angina pectoris, 10 patients with angina pectoris who smoked at least 10 cigarettes a day were studied before, during, and after a standardised maximal exercise test. This was done at the end of four randomly allocated one-week treatment periods during which the patients took glyceryl trinitrate while not smoking, took glyceryl trinitrate while smoking, took glycerly trinitrate and propranolol (380 mg/day) while not smoking, and took glyceryl trinitrate and propranolol while smoking. Carboxyhaemoglobin was measured to ensure compliance. Smoking was associated with a significantly higher heart rate, blood pressure, number of positions with ST-segment depression, and total ST-segment depression after exercise than non-smoking (p < 0.01) whether or not the patients were taking propranolol. These results suggest that smoking aggravates the simple haemodynamic variables used to assess myocardial oxygen requirements and the exercise-induced precordial electrocardiographic signs of myocardial ischaemia. These effects were still evident after treatment with propranolol and represent a hindrance to the effective medical treatment of angina pectoris.  相似文献   

17.
Nitric oxide (NO) formation in the liver and blood of the mouse following intraperitoneal treatment with nitroglycerin (glycerol trinitrate, GTN) was determined using electron spin resonance (ESR) spectroscopy. ESR signals of heme-NO complexes were detected at maximum levels within 5 min in the liver, but increased to a maximum level about 15–30 min later in the blood. GTN is not metabolized to release NO in vitro in the blood of the mouse. The hepatic microsomes which showed the heme-NO complexes ESR signals were incubated with mouse erythrocytes, with the result that a hemoglobin-NO signal was obtained from the erythrocytes. The activities of microsomal cytochrome P-450, the hepatic level of glutathione, and the reduction rate of nitroxide radicals in the in vivo liver, measured using L-band ESR spectroscopy, were temporarily decreased following GTN administration. In conclusion, NO in the liver could be scavenged by circulating erythrocytes, which might minimize NO-induced liver damage.  相似文献   

18.
Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.  相似文献   

19.
We have recently shown that nitric-oxide (NO)-induced apoptosis in Jurkat human leukemia cells requires degradation of mitochondria phospholipid cardiolipin, cytochrome c release, and activation of caspase-9 and caspase-3. Moreover, an inhibitor of lipid peroxidation, Trolox, suppressed apoptosis in Jurkat cells induced by NO donor glycerol trinitrate. Here we demonstrate that this antiapoptotic effect of Trolox occurred despite massive release of the mitochondrial protein cytochrome c into the cytosol and mitochondrial damage. Incubation with Trolox caused a profound reduction of intracellular ATP concentration in Jurkat cells treated by NO. Trolox prevented cardiolipin degradation and caused its accumulation in Jurkat cells. Furthermore, Trolox markedly downregulated the NO-mediated activation of caspase-9 and caspase-3. Caspase-9 is known to be activated by released cytochrome c and together with caspase-3 is considered the most proximal to mitochondria. Our results suggest that the targets of the antiapoptotic effect of Trolox are located downstream of the mitochondria and that caspase activation and subsequent apoptosis could be blocked even in the presence of cytochrome c released from the mitochondria.  相似文献   

20.
Nitroglycerin (glycerol trinitrate [GTN]), an explosive and vasodilatory compound, was metabolized by mixed microbial cultures from aeration tank sludge previously exposed to GTN. Aerobic enrichment cultures removed GTN rapidly in the absence of a supplemental carbon source. Complete denitration of GTN, provided as the sole C and N source, was observed in aerobic batch cultures and proceeded stepwise via the dinitrate and mononitrate isomers, with successive steps occurring at lower rates. The denitration of all glycerol nitrate esters was found to be concomitant, and 1,2-glycerol dinitrate (1,2-GDN) and 2-glycerol mononitrate (2-GMN) were the primary GDN and GMN isomers observed. Denitration of GTN resulted in release of primarily nitrite-N, indicating a reductive denitration mechanism. Biomass growth at the expense of GTN was verified by optical density and plate count measurements. The kinetics of GTN biotransformation were 10-fold faster than reported for complete GTN denitration under anaerobic conditions. A maximum specific growth rate of 0.048 ± 0.005 h−1 (mean ± standard deviation) was estimated for the mixed culture at 25°C. Evidence of GTN toxicity was observed at GTN concentrations above 0.3 mM. To our knowledge, this is the first report of complete denitration of GTN used as a primary growth substrate by a bacterial culture under aerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号