首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prion protein (PrPC) is a conserved glycosylphosphatidylinositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrPC extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrPC-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrPC engagement induces an increase in intracellular Ca2+ levels. This effect was not detected in PrPC-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrPC. Using a best candidate approach to test for potential channels involved in Ca2+ influx evoked by STI1-PrPC, we found that α-bungarotoxin, a specific inhibitor for α7 nicotinic acetylcholine receptor (α7nAChR), was able to block PrPC-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when α7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrPC and allowed reconstitution of signaling by PrPC-STI1 interaction. These results indicate that STI1 can interact with the PrPC·α7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.  相似文献   

2.
Prion protein (PrPC) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrPC interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrPC co‐opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross‐talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrPC‐mediated axonogenesis in peripheral neurons in response to STI1 and laminin‐γ1 chain‐derived peptide (Ln‐γ1). STI1 and Ln‐γ1 promoted robust axonogenesis in wild‐type neurons, whereas no effect was observed in neurons from PrPC‐null mice. PrPC binding to Ln‐γ1 or STI1 led to an increase in intracellular Ca2+ levels via distinct mechanisms: STI1 promoted extracellular Ca2+ influx, and Ln‐γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln‐γ1, but depends on, C‐type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrPC‐mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrPC. These results suggest a role for PrPC as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.  相似文献   

3.
Cellular prion protein (PrPC ) is widely expressed and displays a variety of well‐described functions in the central nervous system (CNS ). Mutations of the PRNP gene are known to promote genetic human spongiform encephalopathies, but the components of gain‐ or loss‐of‐function mutations to PrPC remain a matter for debate. Among the proteins described to interact with PrPC is Stress‐inducible protein 1 (STI 1), a co‐chaperonin that is secreted from astrocytes and triggers neuroprotection and neuritogenesis through its interaction with PrPC . In this work, we evaluated the impact of different PrPC pathogenic point mutations on signaling pathways induced by the STI 1‐PrPC interaction. We found that some of the pathogenic mutations evaluated herein induce partial or total disruption of neuritogenesis and neuroprotection mediated by mitogen‐activated protein kinase (MAPK )/extracellular signal‐regulated kinases 1 and 2 (ERK 1/2) and protein kinase A (PKA ) signaling triggered by STI 1‐PrPC engagement. A pathogenic mutant PrPC that lacked both neuroprotection and neuritogenesis activities fail to promote negative dominance upon wild‐type PrPC . Also, a STI 1‐α7‐nicotinic acetylcholine receptor‐dependent cellular signaling was present in a PrPC mutant that maintained both neuroprotection and neuritogenesis activities similar to what has been previously observed by wild‐type PrPC . These results point to a loss‐of‐function mechanism underlying the pathogenicity of PrPC mutations.

  相似文献   

4.
《朊病毒》2013,7(3):165-173
ABSTRACT

In recent years, prion protein (PrPC) has been considered as a promising target molecule for cancer therapies, due its direct or indirect participation in tumor growth, metastasis, and resistance to cell death induced by chemotherapy. PrPC functions as a scaffold protein, forming multiprotein complexes on the plasma membrane, which elicits distinct signaling pathways involved in diverse biological phenomena and could be modulated depending on the cell type, complex composition, and organization. In addition, PrPC and its partners participate in self-renewal of embryonic, tissue-specific stem cells and cancer stem cells, which are suggested to be responsible for the origin, maintenance, relapse, and dissemination of tumors. Interference with protein–protein interaction has been recognized as an important therapeutic strategy in cancer; indeed, the possible interference in PrPC engagement with specific partners is a novel strategy. Recently, our group successfully used that approach to interfere with the interaction between PrPC and HSP-90/70 organizing protein (HOP, also known as stress-inducible protein 1 - STI1) to control the growth of human glioblastoma in animal models. Thus, PrPC-organized multicomplexes have emerged as feasible candidates for anti-tumor therapy, warranting further exploration.  相似文献   

5.
Prions, the agents of transmissible spongiform encephalopathies, require the expression of prion protein (PrPC) to propagate disease. PrPC is converted into an abnormal insoluble form, PrPSc, that gains neurotoxic activity. Conversely, clinical manifestations of prion disease may occur either before or in the absence of PrPSc deposits, but the loss of normal PrPC function contribution for the etiology of these diseases is still debatable. Prion disease-associated mutations in PrPC represent one of the best models to understand the impact of PrPC loss-of-function. PrPC associates with various molecules and, in particular, the interaction of PrPC with laminin (Ln) modulates neuronal plasticity and memory formation. To assess the functional alterations associated with PrPC mutations, wild-type and mutated PrPC proteins were expressed in a neural cell line derived from a PrPC-null mouse. Treatment with the laminin γ1 chain peptide (Ln γ1), which mimics the Ln binding site for PrPC, increased intracellular calcium in cells expressing wild-type PrPC, whereas a significantly lower response was observed in cells expressing mutated PrPC molecules. The Ln γ1 did not promote process outgrowth or protect against staurosporine-induced cell death in cells expressing mutated PrPC molecules in contrast to cells expressing wild-type PrPC. The co-expression of wild-type PrPC with mutated PrPC molecules was able to rescue the Ln protective effects, indicating the lack of negative dominance of PrPC mutated molecules. These results indicate that PrPC mutations impair process outgrowth and survival mediated by Ln γ1 peptide in neural cells, which may contribute to the pathogenesis of genetic prion diseases.  相似文献   

6.
PrPC, a host protein which in prion-infected animals is converted to PrPSc, is linked to the cell membrane by a GPI anchor. Mice expressing PrPC without GPI anchor (tgGPI- mice), are susceptible to prion infection but accumulate anchorless PrPSc extra-, rather than intracellularly. We investigated whether tgGPI mice could faithfully propagate prion strains despite the deviant structure and location of anchorless PrPSc. We found that RML and ME7, but not 22L prions propagated in tgGPI brain developed novel cell tropisms, as determined by the Cell Panel Assay (CPA). Surprisingly, the levels of proteinase K-resistant PrPSc (PrPres) in RML- or ME7-infected tgGPI brain were 25–50 times higher than in wild-type brain. When returned to wild-type brain, ME7 prions recovered their original properties, however RML prions had given rise to a novel prion strain, designated SFL, which remained unchanged even after three passages in wild-type mice. Because both RML PrPSc and SFL PrPSc are stably propagated in wild-type mice we propose that the two conformations are separated by a high activation energy barrier which is abrogated in tgGPI mice.  相似文献   

7.
Cellular prion protein (PrPC) is expressed not only in neuronal cells but also in non-neuronal cells such as astroglial cells. In the present study, the prion protein (PrP) gene (Prnp)-deficient astroglial cell line GpL1 from hippocampal cells of ZrchI Prnp−/− mice were established. Transfection of Prnp suppressed cell death in GpL1 cells under serum-free conditions. The PrP-expressing GpL1 cells showed increased superoxide dismutase activity compared to control GpL1 cells. These results suggest that the anti-oxidative activity of PrPC functions in not only neuronal cells but also astroglial cells possibly due to the increased anti-oxidative activity of astroglial cells.  相似文献   

8.
The causative agent of prion diseases is the pathological isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc has an identical amino acid sequence to PrPC; thus, it has been assumed that an immune response against PrPSc could not be found in prion-affected animals. In this study, we found the anti-prion protein (PrP) antibody at the terminal stage of mouse scrapie. Several sera from mice in the terminal stage of scrapie reacted to the recombinant mouse PrP (rMPrP) molecules and brain homogenates of mouse prion diseases. These results indicate that mouse could recognize PrPC or PrPSc as antigens by the host immune system. Furthermore, immunization with rMPrP generates high titers of anti-PrP antibodies in wild-type mice. Some anti-PrP antibodies immunized with rMPrP prevent PrPSc replication in vitro. The mouse sera from terminal prion disease have several wide epitopes, although mouse sera immunized with rMPrP possess narrow epitopes.  相似文献   

9.
A hallmark of prion diseases is the conversion of the host-encoded prion protein (PrPC where C is cellular) into an alternatively folded, disease-related isoform (PrPSc, where Sc is scrapie), the accumulation of which is associated with synapse degeneration and ultimately neuronal death. The formation of PrPSc is dependent upon the presence of PrPC in specific, cholesterol-sensitive membrane microdomains, commonly called lipid rafts. PrPC is targeted to these lipid rafts because it is attached to membranes via a glycosylphosphatidylinositol anchor. Here, we show that treatment of prion-infected neuronal cell lines (ScN2a, ScGT1, or SMB cells) with synthetic glycosylphosphatidylinositol analogues, glucosamine-phosphatidylinositol (glucosamine-PI) or glucosamine 2-O-methyl inositol octadecyl phosphate, reduced the PrPSc content of these cells in a dose-dependent manner. In addition, ScGT1 cells treated with glucosamine-PI did not transmit infection following intracerebral injection to mice. Treatment with glucosamine-PI increased the cholesterol content of ScGT1 cell membranes and reduced activation of cytoplasmic phospholipase A2 (PLA2), consistent with the hypothesis that the composition of cell membranes affects key PLA2-dependent signaling pathways involved in PrPSc formation. The effect of glucosamine-PI on PrPSc formation was also reversed by the addition of platelet-activating factor. Glucosamine-PI caused the displacement of PrPC from lipid rafts and reduced expression of PrPC at the cell surface, putative sites for PrPSc formation. We propose that treatment with glucosamine-PI modifies local micro-environments that control PrPC expression and activation of PLA2 and subsequently inhibits PrPSc formation.  相似文献   

10.
Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrPC) in the central nervous system into the infectious isoform (PrPSc). The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrPSc. A number of pathogenic PrPC mutants exist that are characterized by an increased propensity for conversion into PrPSc and that differ from wild-type by only a single amino-acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrPC conversion. In this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the current fluctuations through an organic α-hemolysin nanometer-scale pore (nanopore) in which a single prion protein has been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrPC, (a PrPC mutant associated with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease), exhibit easily distinguishable current signatures and kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate discrimination between these two proteins at the single molecule level based on the kinetics of a single PrPC capture event. Moreover, we present a four-state model to describe wild-type PrPC kinetics in the pore as a first step in our investigation on characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrPC. These results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences in stability between wild-type and mutant prion proteins at the single molecule level.  相似文献   

11.
Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10−8 and 10−13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc.  相似文献   

12.
Accumulation of conformationally altered cellular proteins (i.e., prion protein) is the common feature of prions and other neurodegenerative diseases. Previous studies demonstrated that the lack of terminal sequence of cellular prion protein (PrPC), necessary for the addition of glycosylphosphatidylinositol lipid anchor, leads to a protease-resistant conformation that resembles scrapie-associated isoform of prion protein. Moreover, mice overexpressing the truncated form of PrPC showed late-onset, amyloid deposition, and the presence of a short protease-resistant PrP fragment in the brain similar to those found in Gerstmann–Sträussler–Scheinker disease patients. Therefore, the physiopathological function of truncated_/anchorless 23–230 PrPC (Δ23–230 PrPC) has come into focus of attention. The present study aims at revealing the physiopathological function of the anchorless PrPC form by identifying its interacting proteins. The truncated_/anchorless Δ23–230 PrPC along with its interacting proteins was affinity purified using STrEP-Tactin chromatography, in-gel digested, and identified by quadrupole time-of-flight tandem mass spectrometry analysis in prion protein-deficient murine hippocampus (HpL3-4) neuronal cell line. Twenty-three proteins appeared to interact with anchorless Δ23–230 PrPC in HpL3-4 cells. Out of the 23 proteins, one novel protein, pyruvate kinase isozymes M1/M2 (PKM2), exhibited a potential interaction with the anchorless Δ23–230 form of PrPC. Both reverse co-immunoprecipitation and confocal laser-scanning microscopic analysis confirmed an interaction of PKM2 with the anchorless Δ23–230 form of PrPC. Furthermore, we provide the first evidence for co-localization of PKM2 and PrPC as well as PrPC-dependent PKM2 expression regulation. In addition, given the involvement of PrPC in the regulation of apoptosis, we exposed HpL3-4 cells to staurosporine (STS)-mediated apoptotic stress. In response to STS-mediated apoptotic stress, HpL3-4 cells transiently expressing 23–230-truncated PrPC were markedly less viable, were more prone to apoptosis and exhibited significantly higher PKM2 expressional regulation as compared with HpL3-4 cells transiently expressing full-length PrPC (1–253 PrPC). The enhanced STS-induced apoptosis was shown by increased caspase-3 cleavage. Together, our data suggest that the misbalance or over expression of anchorless Δ23–230 form of PrPC in association with the expressional regulation of interacting proteins could render cells more prone to cellular insults-stress response, formation of aggregates and may ultimately be linked to the cell death.  相似文献   

13.
Prion disease is caused by a single pathogenic protein (PrPSc), an abnormal conformer of the normal cellular prion protein PrPC. Depletion of PrPC in prion knockout mice makes them resistant to prion disease. Thus, gene silencing of the Prnp gene is a promising effective therapeutic approach. Here, we examined adeno-associated virus vector type 2 encoding a short hairpin RNA targeting Prnp mRNA (AAV2-PrP-shRNA) to suppress PrPC expression both in vitro and in vivo. AAV2-PrP-shRNA treatment suppressed PrP levels and prevented dendritic degeneration in RML-infected brain aggregate cultures. Infusion of AAV2-PrP-shRNA-eGFP into the thalamus of CD-1 mice showed that eGFP was transported to the cerebral cortex via anterograde transport and the overall PrPC levels were reduced by ∼70% within 4 weeks. For therapeutic purposes, we treated RML-infected CD-1 mice with AAV2-PrP-shRNA beginning at 50 days post inoculation. Although AAV2-PrP-shRNA focally suppressed PrPSc formation in the thalamic infusion site by ∼75%, it did not suppress PrPSc formation efficiently in other regions of the brain. Survival of mice was not extended compared to the untreated controls. Global suppression of PrPC in the brain is required for successful therapy of prion diseases.  相似文献   

14.

Background

The physiological function of the cellular prion protein (PrPC) remains unknown. However, PrPC has been reported to possess a cytoprotective activity that prevents death of neurons and other cells after a toxic stimulus. To explore this effect further, we attempted to reproduce several of the assays in which a protective activity of PrP had been previously demonstrated in mammalian cells.

Results

In the first set of experiments, we found that PrP over-expression had a minimal effect on the death of MCF-7 breast carcinoma cells treated with TNF-α and Prn-p 0/0 immortalized hippocampal neurons (HpL3-4 cells) subjected to serum deprivation. In the second set of assays, we observed only a small difference in viability between cerebellar granule neurons cultured from PrP-null and control mice in response to activation of endogenous or exogenous Bax.

Conclusion

Taken together, our results suggest either that cytoprotection is not a physiologically relevant activity of PrPC, or that PrPC-dependent protective pathways operative in vivo are not adequately modeled by these cell culture systems. We suggest that cell systems capable of mimicking the neurotoxic effects produced in transgenic mice by N-terminally deleted forms of PrP or Doppel may represent more useful tools for analyzing the cytoprotective function of PrPC  相似文献   

15.
Prion diseases are fatal neurodegenerative disorders caused by prion proteins (PrP). Infectious prions accumulate in the brain through a template-mediated conformational conversion of endogenous PrPC into alternately folded PrPSc. Immunoassays toward pre-clinical detection of infectious PrPSc have been confounded by low-level prion accumulation in non-neuronal tissue and the lack of PrPSc selective antibodies. We report a method to purify infectious PrPSc from biological tissues for use as an immunogen and sample enrichment for increased immunoassay sensitivity. Significant prion enrichment is accomplished by sucrose gradient centrifugation of infected tissue and isolation with detergent resistant membranes from lipid rafts (DRMs). At equivalent protein concentration a 50-fold increase in detectable PrPSc was observed in DRM fractions relative to crude brain by direct ELISA. Sequential purification steps result in increased specific infectivity (DRM >20-fold and purified DRM immunogen >40-fold) relative to 1% crude brain homogenate. Purification of PrPSc from DRM was accomplished using phosphotungstic acid protein precipitation after proteinase-K (PK) digestion followed by size exclusion chromatography to separate PK and residual protein fragments from larger prion aggregates. Immunization with purified PrPSc antigen was performed using wild-type (wt) and Prnp0/0 mice, both on Balb/cJ background. A robust immune response against PrPSc was observed in all inoculated Prnp0/0 mice resulting in antisera containing high-titer antibodies against prion protein. Antisera from these mice recognized both PrPC and PrPSc, while binding to other brain-derived protein was not observed. In contrast, the PrPSc inoculum was non-immunogenic in wt mice and antisera showed no reactivity with PrP or any other protein.Key words: prion, scrapie, Prnp0/0 mice, purification methodology, antibody, antisera, lipid-rafts, detergent resistant membranes, neuroscience, immunization, diagnostic  相似文献   

16.
The agent that causes prion diseases is thought to be identical to PrPSc, a conformer of the normal prion protein PrPC. Recently a novel protein, termed Doppel (Dpl), was identified that shares significant biochemical and structural homology with PrPC. To investigate the function of Dpl in neurogenesis and in prion pathology, we generated embryonic stem (ES) cells harbouring a homozygous disruption of the Prnd gene that encodes Dpl. After in vitro differentiation and grafting into adult brains of PrPC-deficient Prnp0/0 mice, Dpl-deficient ES cell-derived grafts contained all neural lineages analyzed, including neurons and astrocytes. When Prnd-deficient neural tissue was inoculated with scrapie prions, typical features of prion pathology including spongiosis, gliosis and PrPSc accumulation, were observed. Therefore, Dpl is unlikely to exert a cell-autonomous function during neural differentiation and, in contrast to its homologue PrPC, is dispensable for prion disease progression and for generation of PrPSc.  相似文献   

17.
The cellular prion protein (PrPC), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrPC in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrPC knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and Nε-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrPC may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways.  相似文献   

18.
Alzheimer disease (AD) is characterized by the amyloidogenic processing of the amyloid precursor protein (APP), culminating in the accumulation of amyloid-β peptides in the brain. The enzymatic action of the β-secretase, BACE1 is the rate-limiting step in this amyloidogenic processing of APP. BACE1 cleavage of wild-type APP (APPWT) is inhibited by the cellular prion protein (PrPC). Our recent study has revealed the molecular and cellular mechanisms behind this observation by showing that PrPC directly interacts with the pro-domain of BACE1 in the trans-Golgi network (TGN), decreasing the amount of BACE1 at the cell surface and in endosomes where it cleaves APPWT, while increasing BACE1 in the TGN where it preferentially cleaves APP with the Swedish mutation (APPSwe). PrPC deletion in transgenic mice expressing the Swedish and Indiana familial mutations (APPSwe,Ind) failed to affect amyloid-β accumulation, which is explained by the differential subcellular sites of action of BACE1 toward APPWT and APPSwe. This, together with our observation that PrPC is reduced in sporadic but not familial AD brain, suggests that PrPC plays a key protective role against sporadic AD. It also highlights the need for an APPWT transgenic mouse model to understand the molecular and cellular mechanisms underlying sporadic AD.  相似文献   

19.
《朊病毒》2013,7(3):217-222
Alzheimer disease (AD) is characterized by the amyloidogenic processing of the amyloid precursor protein (APP), culminating in the accumulation of amyloid-β peptides in the brain. The enzymatic action of the β-secretase, BACE1 is the rate-limiting step in this amyloidogenic processing of APP. BACE1 cleavage of wild-type APP (APPWT) is inhibited by the cellular prion protein (PrPC). Our recent study has revealed the molecular and cellular mechanisms behind this observation by showing that PrPC directly interacts with the pro-domain of BACE1 in the trans-Golgi network (TGN), decreasing the amount of BACE1 at the cell surface and in endosomes where it cleaves APPWT, while increasing BACE1 in the TGN where it preferentially cleaves APP with the Swedish mutation (APPSwe). PrPC deletion in transgenic mice expressing the Swedish and Indiana familial mutations (APPSwe,Ind) failed to affect amyloid-β accumulation, which is explained by the differential subcellular sites of action of BACE1 toward APPWT and APPSwe. This, together with our observation that PrPC is reduced in sporadic but not familial AD brain, suggests that PrPC plays a key protective role against sporadic AD. It also highlights the need for an APPWT transgenic mouse model to understand the molecular and cellular mechanisms underlying sporadic AD.  相似文献   

20.
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins’ folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号