首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朊病毒病的发生是由于细胞正常朊蛋白PrPc转变成了异常构象的PrPc形式。PrPc的生理学功能目前尚不完全明确,可能与铜离子代谢、脂质摄取以及细胞信号传递有关。PrPc可以与小窝蛋白相互作用而活化Fyn非受体酪氨酸激酶从而引起下游信号通路的转导;可以作为受体与PrPc键合多肽结合后激活cAMP/PKA信号通路;以及引起细胞内钙离子浓度变化而活化信号通路。  相似文献   

2.
The physiological functions of PrPC remain enigmatic, but the central domain, comprising highly conserved regions of the protein may play an important role. Indeed, a large number of studies indicate that synthetic peptides containing residues 106–126 (CR) located in the central domain (CD, 95–133) of PrPC are neurotoxic. The central domain comprises two chemically distinct subdomains, the charge cluster (CC, 95–110) and a hydrophobic region (HR, 112–133). The aim of the present study was to establish the individual cytotoxicity of CC, HR and CD. Our results show that only the CD peptide is neurotoxic. Biochemical, Transmission Electron Microscopy and Atomic Force Microscopy experiments demonstrated that the CD peptide is able to activate caspase-3 and disrupt the cell membrane, leading to cell death.  相似文献   

3.
It is now well established that the conversion of the cellular prion protein, PrPC, into its anomalous conformer, PrPSc, is central to the onset of prion disease. However, both the mechanism of prion-related neurodegeneration and the physiologic role of PrPC are still unknown. The use of animal and cell models has suggested a number of putative functions for the protein, including cell signaling, adhesion, proliferation, and differentiation. Given that skeletal muscles express significant amounts of PrPC and have been related to PrPC pathophysiology, in the present study, we used skeletal muscles to analyze whether the protein plays a role in adult morphogenesis. We employed an in vivo paradigm that allowed us to compare the regeneration of acutely damaged hind-limb tibialis anterior muscles of mice expressing, or not expressing, PrPC. Using morphometric and biochemical parameters, we provide compelling evidence that the absence of PrPC significantly slows the regeneration process compared to wild-type muscles by attenuating the stress-activated p38 pathway, and the consequent exit from the cell cycle, of myogenic precursor cells. Demonstrating the specificity of this finding, restoring PrPC expression completely rescued the muscle phenotype evidenced in the absence of PrPC.The cellular prion protein (PrPC) is a glycoprotein, prominently expressed in the mammalian central nervous system (CNS) and lymphoreticular system, that is anchored to the cell external surface through a glycolipidic moiety. The bad reputation acquired by PrPC originates from the notion that an aberrant conformer of it (PrPSc) is the major component of the prion, the unconventional infectious particle that causes fatal neurodegenerative disorders, i.e., transmissible spongiform encephalopathies (TSE) or prion diseases (56). A wealth of evidence has suggested that the function of PrPC is beneficial to the cell, but currently, our detailed comprehension of its physiology remains poor. In this respect, the availability of knockout (KO) paradigms for PrPC has provided less crucial information than expected. Subtle phenotypes, e.g., mild neuropathologic, cognitive, and behavioral deficits, have been described in PrP-KO mice (17, 50), but these animals generally live a normal life span without displaying obvious developmental defects (8, 42). Importantly, the same holds true when the expression of PrPC is postnatally abrogated (40). The extensive search for PrPC''s raison d''être has ascribed to the protein a plethora of functions (for updated reviews, see references 1 and 35); among these, roles in cell adhesion, migration, and differentiation have been proposed whereby PrPC could act by modulating different cell-signaling pathways (63). In this framework, a variety of neuronal proteins have been hypothesized to interact with PrPC (reviewed in references 1 and 11), for example, cell adhesion molecules or extracellular matrix proteins, which could explain the capacity of PrPC to mediate the neuritogenesis and neuronal differentiation observed in several cell model systems (13, 22, 23, 27, 36, 59, 64).Although neurons are generally regarded as the model of choice for unraveling the function of PrPC, the expression of the protein in several other organs suggests that PrPC has a conserved role in different tissues. Thus, important insight into PrPC function may also be provided by the analysis of extraneural tissues. One such tissue is skeletal muscle, which has been shown to express PrPC at significant levels (43, 46) and has been found to upregulate PrPC levels under stress conditions (71). On the other hand, ablation of the PrP gene has been shown to directly affect skeletal muscles, for example, by enhancing oxidative damage (30) or by diminishing tolerance for physical exercise (51). Skeletal muscles have also been associated with prion pathology, as evidenced by the accumulation of PrPSc (or PrPSc-like forms) in the muscles of TSE-affected humans and animals (2, 3, 6, 21, 53, 67) and by transgenic-mouse models of some inherited TSEs (16). In addition, overexpression of wild-type (WT) PrPC (25, 68), or expression of TSE-associated mutants of the protein (16, 66), generates myopathic traits in transgenic mice.In light of these notions, and because intact muscle tissues are more amenable to in vivo manipulations than neural tissue, we set out to analyze the potential role of PrPC in tissue morphogenesis (38, 41, 46) using an in vivo skeletal-muscle paradigm from two congenic mouse lines expressing (WT) or not expressing (PrP-KO) PrPC. Importantly, to verify that the PrP-KO muscle phenotype was specifically dependent on the absence of PrPC, we used PrP-KO mice reconstituted with a PrP transgene (PrP-Tg). The applied protocol consisted of first characterizing the degeneration of the hind-limb tibialis anterior (TA) muscle and then evaluating the myogenic process from the response to inflammation to the full recovery of the muscle. By combining acute insult with adult age, this strategy also had the potential to bypass possible compensatory mechanisms that might mask PrP-KO phenotypes during embryogenesis and/or in adulthood under normal conditions (65).In this study, we provide evidence that, compared to animals expressing PrPC (WT and PrP-Tg), recovery from damage of adult skeletal muscles was significantly slower in PrP-KO mice. Analysis of the different stages of muscle regeneration allowed us to conclude that PrPC is one of the factors that govern the early phases of this process, in which the proliferation and differentiation of myogenic precursor cells take place.  相似文献   

4.
1. The cellular prion protein (PrPC) is expressed widely in neural and nonneural tissues at the highest level in neurons in the central nervous system (CNS).2. Recent studies indicated that transgenic mice with the cytoplasmic accumulation of PrPC exhibited extensive neurodegeneration in the cerebellum, although the underlying mechanism remains unknown. To identify the genes whose expression is controlled by overexpression of PrPC in human cells, we have established a stable PrPC-expressing HEK293 cell line designated P1 by the site-specific recombination technique.3. Microarray analysis identified 33 genes expressed differentially between P1 and the parent PrPC-non-expressing cell line among 12,814 genes examined. They included 18 genes involved in neuronal and glial functions, 5 related to production of extracellular matrix proteins, and 2 located in the complement cascade.4. Northern blot analysis verified marked upregulation in P1 of the brain-specific protein phosphatase 2A beta subunit (PPP2R2B), a causative gene of spinocerebellar ataxia 12, and the cerebellar degeneration-related autoantigen (CDR34) gene associated with development of paraneoplastic cerebellar degeneration.5. These results indicate that accumulation of PrPC in the cell caused aberrant regulation of a battery of the genes important for specific neuronal function. This represents a possible mechanism underlying PrPC-mediated selective neurodegeneration.  相似文献   

5.
Converging evidence leaves little doubt that a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich PrP-scrapie (PrPSc) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrPSc, nor the normal function of PrPC is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrPC mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrPC increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrPC on ferritin iron content is enhanced by stimulating PrPC endocytosis, and reversed by cross-linking PrPC on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP102L decreases ferritin iron content significantly relative to PrPC expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrPC nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrPC in cellular iron uptake and transport to ferritin, and dysfunction of PrPC as a significant contributing factor of brain iron imbalance in prion disorders.  相似文献   

6.
The [URE3] yeast prion is a self-propagating inactive form of the Ure2p protein. We show here that Ure2p from the species Saccharomyces paradoxus (Ure2pSp) can be efficiently converted into a prion form and propagate [URE3] when expressed in Saccharomyces cerevisiae at physiological level. We found however that Ure2pSp overexpression prevents efficient prion propagation. We have compared the aggregation rate and propagon numbers of Ure2pSp and of S. cerevisiae Ure2p (Ure2pSc) in [URE3] cells both at different expression levels. Overexpression of both Ure2p orthologues accelerates formation of large aggregates but Ure2pSp aggregates faster than Ure2pSc. Although the yeast cells that contain these large Ure2p aggregates do not transmit [URE3] to daughter cells, the corresponding crude extract retains the ability to induce [URE3] in wild-type [ure3-0] cells. At low expression level, propagon numbers are higher with Ure2pSc than with Ure2pSp. Overexpression of Ure2p decreases the number of [URE3] propagons with Ure2pSc. Together, our results demonstrate that the concentration of a prion protein is a key factor for prion propagation. We propose a model to explain how prion protein overexpression can produce a detrimental effect on prion propagation and why Ure2pSp might be more sensitive to such effects than Ure2pSc.  相似文献   

7.
Soluble amyloid beta (Aβ) peptide has been linked to the pathology of Alzheimer’s disease. A variety of soluble oligomers have been observed to be toxic, ranging from dimers to protofibrils. No tertiary structure has been identified as a single biologically relevant form, though many models are comprised of highly ordered β-sheets. Evidence exists for much less ordered toxic oligomers. The mechanism of toxicity remains highly debated and probably involves multiple pathways. Interaction of Aβ oligomers with the N-terminus of the cellular form of the prion protein (PrPc) has recently been proposed. The intrinsically disordered nature of this protein and the highly polymorphic nature of Aβ oligomers make structural resolution of the complex exceptionally challenging. In this study, molecular dynamics simulations are performed for dodecameric assemblies of Aβ comprised of monomers having a single, short antiparallel β-hairpin at the C-terminus. The resulting models, devoid of any intermolecular hydrogen bonds, are shown to correlate well with experimental data and are found to be quite stable within the hydrophobic core, whereas the α-helical N-termini transform to a random coil state. This indicates that highly ordered assemblies are not required for stability and less ordered oligomers are a viable component in the population of soluble oligomers. In addition, a tentative model is proposed for the association of Aβ dimers with a double deletion mutant of the intrinsically disordered N-terminus of PrPc. This may be useful as a conceptual working model for the binding of higher order oligomers and in the design of further experiments.  相似文献   

8.
朊病毒病是一种由朊病毒侵染动物神经系统并引发神经退行性症状的传染性疾病。朊病毒是由正常朊蛋白PrP^C通过构象转化形成具蛋白酶抗性的异常朊蛋白PrP^Se的病原微生物。最新研究表明,朊蛋白通过构象转变形成新的功能分子的现象在生物界中普遍存在,并与正常生物功能密切相关。通过研究类朊蛋白现象可以有助于揭示朊病毒感染机制以及深化对生物遗传多样性的了解。  相似文献   

9.
10.
何凤田 《生命的化学》2001,21(6):445-447
近年来 ,关于朊病毒 (Prion ,PrP)的结构与功能以及相关疾病的研究倍受关注。正常朊病毒 (PrPc)是一类高度保守的糖蛋白 ,其广泛表达于脊椎动物 ,其与神经系统功能的维持、淋巴细胞信号转导、核酸代谢等有关 ;当其发生构象改变后可变成致病性朊病毒(PrPSc)。PrPSc可引起包括疯牛病在内的一系列致死性神经变性疾病 (统称为Prion病 )。1 .PrPc 的化学结构PrPc 以一个糖基磷脂酰肌醇 (GPI)锚定于细胞膜 ,GPI锚被唾液酸修饰 ,其作用是允许PrPc 在胞膜磷脂双层中活动 ,从而使蛋白质从一个细胞易位…  相似文献   

11.
12.
The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrPC in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrPC in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrPC promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrPC suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrPC as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.  相似文献   

13.
In this report we demonstrated that cellular prion protein is strictly associated with gangliosides in microdomains of neural and lymphocytic cells. We preliminarily investigated the protein distribution on the plasma membrane of human neuroblastoma cells, revealing the presence of large clusters. In order to evaluate its possible role in tyrosine signaling pathway triggered by GEM, we analyzed PrPc presence in microdomains and its association with gangliosides, using cholera toxin as a marker of GEM in neuroblastoma cells and anti-GM3 MoAb for identification of GEM in lymphoblastoid cells. In neuroblastoma cells scanning confocal microscopical analysis revealed a consistent colocalization between PrPc and GM1 despite an uneven distribution of both on the cell surface, indicating the existence of PrPc-enriched microdomains. In lymphoblastoid T cells PrPc molecules were mainly, but not exclusively, colocalized with GM3. In addition, PrPc was present in the Triton-insoluble fractions, corresponding to GEM of cell plasma membrane. Additional evidence for a specific PrPc-GM3 interaction in these cells was derived from the results of TLC analysis, showing that prion protein was associated with GM3 in PrPc immunoprecipitates. The physical association of PrPc with ganglioside GM3 within microdomains of lymphocytic cells strongly suggests a role for PrPc-GM3 complex as a structural component of the multimolecular signaling complex involved in T cell activation and other dynamic lymphocytic plasma membrane functions.  相似文献   

14.
15.
The prion diseases, such as Creutzfeldt-Jakob disease of humans and bovine spongiform encephalopathy, involve the aberrant metabolism and accumulation of prion protein PrP. There are three contradictory hypotheses about evolution of prion protein gene PRNP. Population genetic studies have proposed that PRNP could be under balancing selection, strong purifying selection, or mainly positive selection. We made use of the maximum likelihood tests for detection of positive selection at the amino acid level and present availability of PRNP coding sequences to contribute to these disagreements. Positive selection could occur at amino acids residing in active sites, and at amino acids involved in protein-protein interactions. Thus we tested a hypothesis that positive selection at the amino acid level in PrP might have taken place in human and related species from the superordinal group Euarchonta, as well as in bovine and related species from the superordinal clade Laurasiatheria. Our study and the present experimental evidences indicate that positive selection at the amino acid level might have taken place in the PrP signal sequences and conformationally plastic PrP regions, as well as at the protein X binding sites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Prof. Vera Gamulin passed away.  相似文献   

16.
The NMR structure of the horse (Equus caballus) cellular prion protein at 25 °C exhibits the typical PrPC [cellular form of prion protein (PrP)] global architecture, but in contrast to most other mammalian PrPCs, it contains a well-structured loop connecting the β2 strand with the α2 helix. Comparison with designed variants of the mouse prion protein resulted in the identification of a single amino acid exchange within the loop, D167S, which correlates with the high structural order of this loop in the solution structure at 25 °C and is unique to the PrP sequences of equine species. The β2-α2 loop and the α3 helix form a protein surface epitope that has been proposed to be the recognition area for a hypothetical chaperone, “protein X,” which would promote conversion of PrPC into the disease-related scrapie form and thus mediate intermolecular interactions related to the transmission barrier for transmissible spongiform encephalopathies (TSEs) between different species. The present results are evaluated in light of recent indications from in vivo experiments that the local β2-α2 loop structure affects the susceptibility of transgenic mice to TSEs and the fact that there are no reports on TSE in horses.  相似文献   

17.
《朊病毒》2013,7(2):83-93
The key pathogenic event in prion disease involves misfolding and aggregation of the cellular prion protein (PrP). Beyond this fundamental observation, the mechanism by which PrP misfolding in neurons leads to injury and death remains enigmatic. Prion toxicity may come about by perverting the normal function of PrP. If so, understanding the normal function of PrP may help to elucidate the molecular mechansim of prion disease. Ablation of the Prnp gene, which encodes PrP, was instrumental for determining that the continuous production of PrP is essential for replicating prion infectivity. Since the structure of PrP has not provided any hints to its possible function, and there is no obvious phenotype in PrP KO mice, studies of PrP function have often relied on intuition and serendipity. Here, we enumerate the multitude of phenotypes described in PrP deficient mice, many of which manifest themselves only upon physiological challenge. We discuss the pleiotropic phenotypes of PrP deficient mice in relation to the possible normal function of PrP. The critical question remains open: which of these phenotypes are primary effects of PrP deletion and what do they tell us about the function of PrP?  相似文献   

18.

Background

Prion diseases are fatal neurodegenerative disorders that can arise sporadically, be genetically inherited or acquired through infection. The key event in these diseases is misfolding of the cellular prion protein (PrPC) into a pathogenic isoform that is rich in β-sheet structure. This conformational change may result in the formation of PrPSc, the prion isoform of PrP, which propagates itself by imprinting its aberrant conformation onto PrPC molecules. A great deal of effort has been devoted to developing protocols for purifying PrPSc for structural studies, and testing its biological properties. Most procedures rely on protease digestion, allowing efficient purification of PrP27-30, the protease-resistant core of PrPSc. However, protease treatment cannot be used to isolate abnormal forms of PrP lacking conventional protease resistance, such as those found in several genetic and atypical sporadic cases.

Principal Findings

We developed a method for purifying pathological PrP molecules based on sequential centrifugation and immunoprecipitation with a monoclonal antibody selective for aggregated PrP. With this procedure we purified full-length PrPSc and mutant PrP aggregates at electrophoretic homogeneity. PrPSc purified from prion-infected mice was able to seed misfolding of PrPC in a protein misfolding cyclic amplification reaction, and mutant PrP aggregates from transgenic mice were toxic to cultured neurons.

Significance

The immunopurification protocol described here isolates biologically active forms of aggregated PrP. These preparations may be useful for investigating the structural and chemico-physical properties of infectious and neurotoxic PrP aggregates.  相似文献   

19.
Whereas prion replication involves structural rearrangement of cellular prion protein (PrPC), the existence of conformational epitopes remains speculative and controversial, and PrP transformation is monitored by immunoblot detection of PrP(27–30), a protease-resistant counterpart of the pathogenic scrapie form (PrPSc) of PrP. We now describe the involvement of specific amino acids in conformational determinants of novel monoclonal antibodies (mAbs) raised against randomly chimeric PrP. Epitope recognition of two mAbs depended on polymorphisms controlling disease susceptibility. Detection by one, referred to as PRC5, required alanine and asparagine at discontinuous mouse PrP residues 132 and 158, which acquire proximity when residues 126–218 form a structured globular domain. The discontinuous epitope of glycosylation-dependent mAb PRC7 also mapped within this domain at residues 154 and 185. In accordance with their conformational dependence, tertiary structure perturbations compromised recognition by PRC5, PRC7, as well as previously characterized mAbs whose epitopes also reside in the globular domain, whereas conformation-independent epitopes proximal or distal to this region were refractory to such destabilizing treatments. Our studies also address the paradox of how conformational epitopes remain functional following denaturing treatments and indicate that cellular PrP and PrP(27–30) both renature to a common structure that reconstitutes the globular domain.  相似文献   

20.
In prion diseases, the infectious isoform of the prion protein (PrPSc) may subvert a normal, physiological activity of the cellular isoform (PrPC). A deletion mutant of the prion protein (Δ105–125) that produces a neonatal lethal phenotype when expressed in transgenic mice provides a window into the normal function of PrPC and how it can be corrupted to produce neurotoxic effects. We report here the surprising and unexpected observation that cells expressing Δ105–125 PrP and related mutants are hypersensitive to the toxic effects of two classes of antibiotics (aminoglycosides and bleomycin analogues) that are commonly used for selection of stably transfected cell lines. This unusual phenomenon mimics several essential features of Δ105–125 PrP toxicity seen in transgenic mice, including rescue by co-expression of wild type PrP. Cells expressing Δ105–125 PrP are susceptible to drug toxicity within minutes, suggesting that the mutant protein enhances cellular accumulation of these cationic compounds. Our results establish a screenable cellular phenotype for the activity of neurotoxic forms of PrP, and they suggest possible mechanisms by which these molecules could produce their pathological effects in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号