首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ssz1 (Pdr13) and Zuo1, members of the Hsp70 and J-protein molecular chaperone families, respectively, form a heterodimer and function on the ribosome with the Hsp70, Ssb, presumably assisting folding of newly synthesized polypeptides. As it has also been reported that Ssz1 induces pleiotropic drug resistance (PDR) when overexpressed, a possible role for Zuo1 in PDR was investigated. The C-terminal domain of Zuo1, which is dispensable for Zuo1's chaperone function on the ribosome, is both necessary and sufficient for PDR induction by Zuo1. A single domain of Ssz1, the N-terminal ATPase domain, is sufficient for PDR induction as well, indicating that Ssz1 does not function as a chaperone in PDR. No role for Ssb was found in PDR; overexpression did not affect PDR, nor was its presence required for Ssz1's or Zuo1's effect on PDR. As our results also indicate that Ssz1 and Zuo1 must be free of ribosomes to induce PDR, we propose that Ssz1's and Zuo1's function in PDR is distinct from their role as ribosome-associated co-chaperones and may be regulatory in nature.  相似文献   

2.
The tertiary structure of apolipoprotein (apo) A-I and the contributions of structural domains to the properties of the protein molecule are not well defined. We used a series of engineered human and mouse apoA-I molecules in a range of physical-biochemical measurements to address this issue. Circular dichroism measurements of alpha-helix thermal unfolding and fluorescence spectroscopy measurements of 8-anilino-1-napthalenesulfonic acid binding indicate that removal of the C-terminal 54 amino acid residues from human and mouse apoA-I has similar effects; the molecules are only slightly destabilized, and there is a decrease in hydrophobic surface exposure. These results are consistent with both human and mouse apoA-I adopting a two-domain tertiary structure, comprising an N-terminal antiparallel helix bundle domain and a separate less ordered C-terminal domain. Mouse apoA-I is significantly less resistant than human apoA-I to thermal and chemical denaturation; the midpoint of thermal unfolding of mouse apoA-I at 45 degrees C is 15 degrees C lower and the midpoint of guanidine hydrochloride denaturation (D1/2) occurs at 0.5 M as compared to 1.0 M for human apoA-I. These differences reflect the overall greater stability of the helix bundle formed by residues 1-189 in human apoA-I. Measurements of the heats of binding to egg phosphatidylcholine (PC) small unilamellar vesicles and the kinetics of solubilization of dimyristoyl PC multilamellar vesicles indicate that the more stable human helix bundle interacts poorly with lipids as compared to the equivalent mouse N-terminal domain. The C-terminal domain of human apoA-I is much more hydrophobic than that of mouse apoA-I; in the lipid-free state the human C-terminal domain (residues 190-243) is partially alpha-helical and undergoes cooperative unfolding (D1/2 = 0.3 M) whereas the isolated mouse C-terminal domain (residues 187-240) is disordered in dilute solution. The human C-terminal domain binds to lipid surfaces much more avidly than the equivalent mouse domain. Human and mouse apoA-I have very different tertiary structure domain contributions for achieving functionality. It is clear that the stability of the N-terminal helix bundle, and the hydrophobicity and alpha-helix content of the C-terminal domain, are critical factors in determining the overall properties of the apoA-I molecule.  相似文献   

3.
Penetration of the endoplasmic reticulum (ER) membrane by polyomavirus (PyV) is a decisive step in virus entry. We showed previously that the ER-resident factor ERp29 induces the local unfolding of PyV to initiate the ER membrane penetration process. ERp29 contains an N-terminal thioredoxin domain (NTD) that mediates its dimerization and a novel C-terminal all-helical domain (CTD) whose function is unclear. The NTD-mediated dimerization of ERp29 is critical for its unfolding activity; whether the CTD plays any role in PyV unfolding is unknown. We now show that three hydrophobic residues within the last helix of the ERp29 CTD that were individually mutated to either lysine or alanine abolished ERp29's ability to stimulate PyV unfolding and infection. This effect was not due to global misfolding of the mutant proteins, as they dimerize and do not form aggregates or display increased protease sensitivity. Moreover, the mutant proteins stimulated secretion of the secretory protein thyroglobulin with an efficiency similar to that of wild-type ERp29. Using a cross-linking coimmunoprecipitation assay, we found that the physical interaction of the ERp29 CTD mutants with PyV is inefficient. Our data thus demonstrate that the ERp29 CTD plays a crucial role in PyV unfolding and infection, likely by serving as part of a substrate-binding domain.  相似文献   

4.
5.
6.
The intracellular C-terminal domain (CTD) of KcsA, a bacterial homotetrameric potassium channel, is a 40-residue-long segment that natively adopts a helical bundle conformation with 4-fold symmetry. A hallmark of KcsA behavior is pH-induced conformational change, which leads to the opening of the channel at acidic pH. Previous studies have reached conflicting conclusions as to the role of the CTD in this transition. Here, we investigate the involvement of this domain in pH-mediated channel opening by NMR using a soluble peptide corresponding to residues 128-160 of the CTD (CTD34). At neutral pH, CTD34 exhibits concentration-dependent spectral changes consistent with oligomer formation. We prove this slowly tumbling species to be a tetramer with a dissociation constant of (2.0±0.5)×10(-)(11)?M(3) by NMR and sedimentation equilibrium experiments. Whereas monomeric CTD34 is only mildly helical, secondary chemical shifts prove that the tetrameric species adopts a tight native-like helical bundle conformation. The tetrameric species undergoes pH-dependent dissociation, and CTD34 is fully monomeric below pH?5.0. The structural basis for this phenomenon is the destabilization of the tetrameric CTD34 by protonation of residue H145 in the monomeric form of the peptide. We conclude that (i) the CTD34 peptide is independently capable of forming a tetrameric helical bundle, and (ii) this structurally significant conformational shift is modulated by the effects of solution pH on residue H145. Therefore, the involvement of this domain in the pH gating of the channel is strongly suggested.  相似文献   

7.
乳腺癌易感蛋白BRCA1的BRCT1结构域染色质伸展活性的定位   总被引:3,自引:0,他引:3  
乳腺癌易感基因BRCA1(Breast cancer susceptibility gene 1)在乳腺癌的发生、发展中起重要作用。BRCA1 C末端含有2个BRCT结构域(BRCT1和BRCT2),许多乳腺癌易感突变发生在BRCA1的BRCT结构域中。利用染色质结构检测技术表明,BRCT结构域具有染色质伸展活性。本文利用缺失突变技术构建了6种BRCT1结构域(1642-1736 aa)缺失突变体并将BRCT1结构域中与染色质伸展相关的重要区域定位到1691-1721之间的氨基酸残基;用丙氨酸扫描技术构建了10种BRCT1结构域丙氨酸扫描突变体并将重要氨基酸残基序列定位到1707-1711之间的IAGGK。利用定位的重要区域进行Blast分析,结果找到一新型同源蛋白质。BRCT1结构域的定位有助于预测BRCT1结构域突变后发生乳腺癌的风险,也为进一步研究BRCT1结构域的功能机制提供了有用的材料。  相似文献   

8.
Ribosomal protein L7/12 is crucial for the function of elongation factor G (EF-G) on the ribosome. Here, we report the localization of a site in the C-terminal domain (CTD) of L7/12 that is critical for the interaction with EF-G. Single conserved surface amino acids were replaced in the CTD of L7/12. Whereas mutations in helices 5 and 6 had no effect, replacements of V66, I69, K70, and R73 in helix 4 increased the Michaelis constant (KM) of EF-G.GTP for the ribosome, suggesting an involvement of these residues in EF-G binding. The mutations did not appreciably affect rapid single-round GTP hydrolysis and had no effect on tRNA translocation on the ribosome. In contrast, the release of inorganic phosphate (Pi) from ribosome-bound EF-G.GDP.Pi was strongly inhibited and became rate-limiting for the turnover of EF-G. The control of Pi release by interactions between EF-G and L7/12 appears to be important for maintaining the conformational coupling between EF-G and the ribosome for translocation and for timing the dissociation of the factor from the ribosome.  相似文献   

9.
Kops O  Zhou XZ  Lu KP 《FEBS letters》2002,513(2-3):305-311
The reversible phosphorylation of serine and threonine residues N-terminal to proline (pSer/Thr-Pro) is an important signaling mechanism in the cell. The pSer/Thr-Pro moiety exists in the two distinct cis and trans conformations, whose conversion is catalyzed by the peptidyl-prolyl isomerase (PPIase) Pin1. Among others, Pin1 binds to the phosphorylated C-terminal domain (CTD) of the largest subunit of the RNA polymerase II, but the biochemical and functional relevance of this interaction is unknown. Here we confirm that the CTD phosphatase Fcp1 can suppress a Pin1 mutation in yeast. Furthermore, this genetic interaction requires the phosphatase domain as well as the BRCT domain of Fcp1, suggesting a critical role of the Fcp1 localization. Based on these observations, we developed a new in vitro assay to analyze the CTD dephosphorylation by Fcp1 that uses only recombinant proteins and mimics the in vivo situation. This assay allows us to present strong evidence that Pin1 is able to stimulate CTD dephosphorylation by Fcp1 in vitro, and that this stimulation depends on Pin1's PPIase activity. Finally, Pin1 significantly increased the dephosphorylation of the CTD on the Ser(5)-Pro motif, but not on Ser(2)-Pro in yeast, which can be explained with Pin1's substrate specificity. Together, our results indicate a new role for Pin1 in the regulation of CTD phosphorylation and present a further example for prolyl isomerization-dependent protein dephosphorylation.  相似文献   

10.
Receptor-interacting protein (RIP), a Ser/Thr kinase component of the tumor necrosis factor (TNF) receptor-1 signaling complex, mediates activation of the nuclear factor kappaB (NF-kappaB) pathway. RIP2 and RIP3 are related kinases that share extensive sequence homology with the kinase domain of RIP. Unlike RIP, which has a C-terminal death domain, and RIP2, which has a C-terminal caspase activation and recruitment domain, RIP3 possesses a unique C terminus. RIP3 binds RIP through this unique C-terminal segment to inhibit RIP- and TNF receptor-1-mediated NF-kappaB activation. We have identified a unique homotypic interaction motif at the C terminus of both RIP and RIP3 that is required for their association. Sixty-four amino acids within RIP3 and 88 residues within RIP are sufficient for interaction of the two proteins. This interaction is a prerequisite for RIP3-mediated phosphorylation of RIP and subsequent attenuation of TNF-induced NF-kappaB activation.  相似文献   

11.
Estrada K  Fisher C  Blacklow SC 《Biochemistry》2008,47(6):1532-1539
The receptor-associated protein (RAP) functions as an escort protein for receptors of the low-density lipoprotein receptor (LDLR) family by preventing premature intracellular binding of ligands and assisting with delivery of mature receptors to the cell surface. The modulation of affinity by pH is believed to play an important role in the escort function of RAP, because RAP binds tightly to proteins of the LDLR family at near-neutral pH early in the secretory pathway where its high affinity precludes premature binding of ligands but then dissociates from bound receptors at the lower pH of the Golgi compartment. The third domain of RAP (RAP-D3), which forms a three-helix bundle, is sufficient to reconstitute the escort activity. Here, we test the hypothesis that low-pH induced unfolding of the RAP-D3 helical bundle facilitates dissociation of RAP-receptor complexes. First, variants of RAP-D3 resistant to low pH-induced unfolding were constructed by replacing interior histidine residues with phenylalanines. In contrast to native RAP-D3, which exhibits an unfolding pKa of 6.3 and a Tm of 42 degrees C, the most hyperstable variant of RAP-D3, in which four histidine residues are replaced with phenylalanine, has an unfolding pKa of 4.8, and a Tm of 58 degrees C. The phenylalanine substitutions in RAP-D3 confer increased stability to pH-induced dissociation of complexes formed between RAP-D3 and a two-repeat fragment of the LDLR (LA3-4). When introduced into full-length RAP, the four mutations that confer hyperstability on RAP-D3 interfere with transport of endogenous LRP-1 to the cell surface in a dominant negative fashion under conditions where expression of normal RAP has no effect on LRP-1 transport. Our studies support a model in which low pH-dependent unfolding of RAP-D3 facilitates dissociation of RAP from the LA repeats of LDLR family proteins in the mildly acidic pH of the Golgi.  相似文献   

12.
ARTS (Sept4_i2) is a mitochondrial pro-apoptotic protein that functions as a tumor suppressor. Its expression is significantly reduced in leukemia and lymphoma patients. ARTS binds and inhibits XIAP (X-linked Inhibitor of Apoptosis protein) by interacting with its Bir3 domain. ARTS promotes degradation of XIAP through the proteasome pathway. By doing so, ARTS removes XIAP inhibition of caspases and enables apoptosis to proceed. ARTS contains 27 unique residues in its C-terminal domain (CTD, residues 248-274) which are important for XIAP binding. Here we characterized the molecular details of this interaction. Biophysical and computational methods were used to show that the ARTS CTD is intrinsically disordered under physiological conditions. Direct binding of ARTS CTD to Bir3 was demonstrated using NMR and fluorescence spectroscopy. The Bir3 interacting region in ARTS CTD was mapped to ARTS residues 266-274, which are the nine C-terminal residues in the protein. Alanine scan of ARTS 266-274 showed the importance of several residues for Bir3 binding, with His268 and Cys273 contributing the most. Adding a reducing agent prevented binding to Bir3. A dimer of ARTS 266-274 formed by oxidation of the Cys residues into a disulfide bond bound with similar affinity and was probably required for the interaction with Bir3. The detailed analysis of the ARTS - Bir3 interaction provides the basis for setting it as a target for anti cancer drug design: It will enable the development of compounds that mimic ARTS CTD, remove IAPs inhibition of caspases, and thereby induce apoptosis.  相似文献   

13.
14.
15.
The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. The ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His(6)-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. The purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2Δ cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His(6)-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2α, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis.  相似文献   

16.
17.
L20 is a specific protein of the bacterial ribosome, which is involved in the early assembly steps of the 50S subunit and in the feedback control of the expression of its own gene. This dual function involves specific interactions with either the 23S rRNA or its messenger RNA. The solution structure of the free Aquifex aeolicus L20 has been solved. It is composed of an unstructured N-terminal domain comprising residues 1-58 and a C-terminal alpha-helical domain. This is in contrast with what is observed in the bacterial 50S subunit, where the N-terminal region folds as an elongated alpha-helical region. The solution structure of the C-terminal domain shows that several solvent-accessible, conserved residues are clustered on the surface of the molecule and are probably involved in RNA recognition. In vivo studies show that this domain is sufficient to repress the expression of the cistrons encoding L35 and L20 in the IF3 operon. The ability of L20 C-terminal domain to specifically recognise RNA suggests an assembly mechanism for L20 into the ribosome. The pre-folded C-terminal domain would make a primary interaction with a specific site on the 23S rRNA. The N-terminal domain would then fold within the ribosome, participating in its correct 3D assembly.  相似文献   

18.
Neuroligin (NLG) 1 is important for synapse development and function, but the underlying mechanisms remain unclear. It is known that at least some aspects of NLG1 function are independent of the presynaptic neurexin, suggesting that the C-terminal domain (CTD) of NLG1 may be sufficient for synaptic regulation. In addition, NLG1 is subjected to activity-dependent proteolytic cleavage, generating a cytosolic CTD fragment, but the significance of this process remains unknown. In this study, we show that the CTD of NLG1 is sufficient to (a) enhance spine and synapse number, (b) modulate synaptic plasticity, and (c) exert these effects via its interaction with spine-associated Rap guanosine triphosphatase–activating protein and subsequent activation of LIM-domain protein kinase 1/cofilin–mediated actin reorganization. Our results provide a novel postsynaptic mechanism by which NLG1 regulates synapse development and function.  相似文献   

19.
The ATP-binding cassette (ABC) transporters are a large family of proteins responsible for the translocation of a variety of compounds across the membranes of both prokaryotes and eukaryotes. The inter-protein and intra-protein interactions in these traffic ATPases are still only poorly understood. In the present study we describe, for the first time, an extensive yeast two-hybrid (Y2H)-based analysis of the interactions of the cytoplasmic loops of the yeast pleiotropic drug resistance (Pdr) protein, Pdr5p, an ABC transporter of Saccharomyces cerevisiae. Four of the major cytosolic loops that have been predicted for this protein [including the two nucleotide-binding domain (NBD)-containing loops and the cytosolic C-terminal region] were subjected to an extensive inter-domain interaction study in addition to being used as baits to identify potential interacting proteins within the cell using the Y2H system. Results of these studies have revealed that the first cytosolic loop (CL1) – containing the first NBD domain – and also the C-terminal region of Pdr5p interact with several candidate proteins. The possibility of an interaction between the CL1 loops of two neighboring Pdr5p molecules was also indicated, which could possibly have implications for dimerization of this protein. Electronic Publication  相似文献   

20.
X-linked inhibitor of apoptosis protein (XIAP)-associated factor 1 (XAF1) has been implicated as a novel tumor suppressor, which was proposed to exert pro-apoptotic effect by antagonizing the anticaspase activity of XIAP. Here, we delineated the domain architecture of XAF1 by applying limited proteolysis and peptide mass fingerprinting analysis. Our results indicated that XAF1 has a distinct domain organization, with a highly compact N-terminal domain (XAF1(NTD) ) followed by a middle domain (XAF1(MD) ), a 42-residue unstructured linker and a C-terminal domain (XAF1(CTD) ). The search of XIAP binding region within XAF1 revealed that a modest affinity XIAP(RING) binding site (dissociation constant, K(d) , ~18 μM) is located at the C-terminal portion of XAF1. This C-terminal region, embracing XAF1(CTD) and a flexible tail at C-terminus (residue Thr251-Ser301), is functionally identified as XIAP(RING) -binding domain of XAF1 (XAF1(RBD) ) in the present study. We have also mapped the interaction sites for XAF1(RBD) on XIAP(RING) by using NMR spectroscopy. By applying in vitro ubiquitination assay, we observed that XAF1(RBD) /XIAP interaction is essential for the ubiquitination of GST-XAF1(RBD) fusion protein. In addition, the C-terminal XAF1 fragment harboring XAF1(RBD) was found to be substantially ubiquitinated by XIAP(RING) . Base on these observations, we speculate a possible role of XAF1(RBD) in targeting XAF1 for XIAP-mediated ubiquitination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号