首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Phytomedicine》2014,21(7):936-941
The in vitro antimicrobial activities of three 3-Benzylchroman derivatives, i.e. Brazilin (1), Brazilein (2) and Sappanone B (3) from Caesalpinia sappan L. (Leguminosae) were assayed, which mainly dealt with synergistic evaluation of aminoglycoside and other type of antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) by the three compounds through the Chequerboard and Time-kill curve methods. The results showed that Compounds 1–3 alone exhibited moderate to weak activity against methicillin-susceptible S. aureus (MSSA) and other standard strains by MICs/MBCs ranged from 32/64 to >1024/>1024 μg/ml, with the order of activity as 1 > 2 > 3. Chequerboard method showed significant anti-MRSA synergy of 1/Aminoglycosides (Gentamicin, Amikacin, Etimicin and Streptomycin) combinations with (FICIs)50 at 0.375–0.5. The combined (MICs)50 values (μg/ml) reduced from 32–128/16–64 to 4–8/4–16, respectively. The percent of reduction by MICs ranged from 50% to 87.5%, with a maximum of 93.8% (1/16 of the alone MIC). Combinations of 2 and 3 with Aminoglycosides and the other antibiotics showed less potency of synergy. The dynamic Time-killing experiment further demonstrated that the combinations of 1/aminoglycoside were synergistically bactericidal against MRSA. The anti-MRSA synergy results of the bacteriostatic (Chequerboard method) and bactericidal (time-kill method) efficiencies of 1/Aminoglycoside combinations was in good consistency, which made the resistance reversed by CLSI guidelines. We concluded that the 3-Benzylchroman derivative Brazilin (1) showed in vitro synergy of bactericidal activities against MRSA when combined with Aminoglycosides, which might be beneficial for combinatory therapy of MRSA infection.  相似文献   

2.
Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1–7]-melittin A [2–9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms. The minimum inhibitory concentrations (MIC) and minimum biofilm-eradication concentrations (MBEC) were determined by microbroth dilution technique. The time-kill curve (TKC) method was used to determine the bactericidal activities of the AMPs alone and in combination with the antibiotics against standard and clinically obtained MRSA biofilms. The MIC values of the AMPs and antibiotics ranged between 2 to 16 and 0.25 to 512 mg/L, and their MBEC values were 640 and 512 to 5120 mg/L, respectively. The TKC studies demonstrated that synergistic interactions occurred most frequently when using nisin + daptomycin/ciprofloxacin, indolicidin + teicoplanin, and CAMA + ciprofloxacin combinations. No antagonism was observed with any combination. AMPs appear to be good candidates for the treatment of MRSA biofilms, as they act as both enhancers of anti-biofilm activities and help to prevent or delay the emergence of resistance when used either alone or in combination with antibiotics.  相似文献   

3.
《Phytomedicine》2014,21(11):1303-1309
Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein–ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations.  相似文献   

4.
Peptidomic analysis of norepinephrine-stimulated skin secretions of the Orinoco lime tree frog Sphaenorhynchus lacteus (Hylidae, Hylinae) revealed the presence of three structurally related host-defense peptides with limited sequence similarity to frenatin 2 from Litoria infrafrenata (Hylidae, Pelodryadinae) and frenatin 2D from Discoglossus sardus (Alytidae). Frenatin 2.1S (GLVGTLLGHIGKAILG.NH2) and frenatin 2.2S (GLVGTLLGHIGKAILS.NH2) are C-terminally α-amidated but frenatin 2.3S (GLVGTLLGHIGKAILG) is not. Frenatin 2.1S and 2.2S show potent bactericidal activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MIC ≤16 μM) but are less active against a range of Gram-negative bacteria. Frenatin 2.1S (LC50 = 80 ± 6 μM) and 2.2S (LC50 = 75 ± 5 μM) are cytotoxic against non-small cell lung adenocarcinoma A549 cells but are less hemolytic against human erythrocytes (LC50 = 167 ± 8 μM for frenatin 2.1S and 169 ± 7 μM for 2.2S). Weak antimicrobial and cytotoxic potencies of frenatin 2.3S demonstrate the importance of C-terminal α-amidation for activity. Frenatin 2.1S and 2.2S significantly (P < 0.05) increased production of proinflammatory cytokines IL-1β and IL-23 by lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages and frenatin 2.1S also enhanced production of TNF-α. Effects on IL-6 production were not significant. Frenatin 2.2S significantly downregulated production of the anti-inflammatory cytokine IL-10 by LPS-stimulated cells. The data support speculation that frenatins act on skin macrophages to produce a cytokine-mediated stimulation of the adaptive immune system in response to invasion by microorganisms. They may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents.  相似文献   

5.
We report in this work the preparation and in vitro antimicrobial evaluation of novel amphiphilic aromatic amino alcohols synthesized by reductive amination of 4-alkyloxybenzaldehyde with 2-amino-2-hydroxymethyl-propane-1,3-diol. The antibacterial activity was determined against four standard strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and 21 clinical isolates of methicillin-resistant Staphylococcus aureus. The antifungal activity was evaluated against four yeast (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis). The results obtained showed a strong positive correlation between the lipophilicity and the antibiotic activity of the tested compounds. The best activities were obtained against the Gram-positive bacteria (MIC = 2–16 μg ml?1) for the five compounds bearing longer alkyl chains (4cg; 8–14 carbons), which were also the most active against Candida (MIC = 2–64 μg ml?1). Compound 4e exhibited the highest levels of inhibitory activity (MIC = 2–16 μg ml?1) against clinical isolates of MRSA. A concentration of twice the MIC resulted in bactericidal activity of 4d against 19 of the 21 clinical isolates.  相似文献   

6.
《Phytomedicine》2014,21(4):443-447
Combinations of two or more drugs, which affect different targets, have frequently been used as a new approach against resistant bacteria. In our work we studied the antimicrobial activity (MIC, MBC) of individual drugs (the phenolic monoterpene thymol, EDTA and vancomycin), of two-drug interactions between thymol and EDTA in comparison with three-drug interactions with vancomycin against sensitive and resistant bacteria. Thymol demonstrated moderate bactericidal activity (MBC between 60 and 4000 μg/ml) while EDTA only exhibited bacteriostatic activity over a range of 60–4000 μg/ml. MICs of vancomycin were between 0.125 and 16 μg/ml against Gram-positive and between 32 and 128 μg/ml against Gram-negative bacteria. Checkerboard dilution and time-kill curve assays were performed to evaluate the mode of interaction of several combinations against Methicillin-resistant Staphylococcus aureus (MRSA NCTC 10442) and Escherichia coli (ATCC 25922). Checkerboard data indicate indifferent interaction against Gram-positive (FICI = 1–1.3) and synergy against Gram-negative bacteria (FICI  0.4), while time kill analyses suggest synergistic effect in different combinations against both types of bacteria. It is remarkable that the combinations could enhance the sensitivity of E. coli to vancomycin 16-fold to which it is normally insensitive. We have provided proof for the concept, that combinations of known antibiotics with modern phytotherapeutics can expand the spectrum of useful therapeutics.  相似文献   

7.
The emergence of bacterial resistance to common antibiotics poses a threat to human health and has rekindled an interest in antimicrobial peptides (AMPs). LHP7, a novel hybrid AMP containing 83 amino acid residues was designed on the basis of the LH28 and plectasin. LHP7 was expressed in Pichia pastoris, the total concentration of secreted protein reached 0.906 g/L after 108 h of methanol induction. Its antimicrobial activity was higher than that of the parent AMPs; the minimal inhibitory concentrations (MICs) of LHP7 against Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus suis were 0.091, 0.023 and 0.18 μM, respectively. The antibacterial activity of LHP7 against clinical MRSA isolates (MICs = 0.73–2.91 μM) was enhanced over that of plectasin. The fractional inhibitory concentration (FIC) indicated a synergistic effect between LHP7 and ampicillin against MRSA (FIC = 0.375), and combinations of LHP7 with gentamicin, rifampin or tetracycline provided evidence of additive effects (FIC = 0.625–1.0). LHP7 exhibited a broad range of pH stability and thermostability, and a hemolytic activity of less than 5% below a concentration of 500 μg/mL. It was resistant to pepsin and papain digestion, but sensitive to trypsin digestion. These results suggest that LHP7 might have potential as a broadly applied and clinically useful antimicrobial agent.  相似文献   

8.
A focused library of rhodanine compounds containing novel substituents at the C5-position was synthesized and tested in vitro against a panel of clinically relevant MRSA strains. The present SAR study was based on our lead compound 1 (MIC = 1.95 μg/mL), with a focus on identifying optimal C5-arylidene substituents. In order to obtain this objective, we condensed several unique aromatic aldehydes with phenylalanine-derived rhodanine intermediates to obtain C5-substituted target rhodanine compounds for evaluation as anti-MRSA compounds. These efforts produced three compounds with significant efficacy: 23, 32 and 44, with MIC values ranging from 0.98 to 1.95 μg/mL against all tested MRSA strains as compared to the reference antibiotics penicillin G (MIC = 15.60–250.0 μg/mL) and ciprofloxacin (MIC = 7.80–62.50 μg/mL) and comparable to that of vancomycin (MIC = 0.48 μg/mL). In addition, compounds 24, 28, 37, 41, 46 and 48 (MIC = 1.95–3.90 μg/mL) were efficacious against all MRSA strains. The majority of the synthesized compounds had bactericidal activity at concentrations only two to fourfold higher than their MIC. Overall, the results suggest that compounds 23, 32 and 44 may be of potential use in the treatment of MRSA infections.  相似文献   

9.
Rhodomyrtone [6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methyl-1-oxobutyl)-9-(2-methylpropyl)-4,9-dihydro-1H-xanthene-1,3(2H)-di-one] from Rhodomyrtus tomentosa (Aiton) Hassk. displayed significant antibacterial activities against Gram-positive bacteria including Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Streptococcus gordonii, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus salivarius. Especially noteworthy was the activity against MRSA with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) ranging from 0.39 to 0.78 μg/ml. As shown for S. pyogenes, no surviving cells were detected within 5 and 6 h after treatment with the compound at 8MBC and 4MBC concentrations, respectively. Rhodomyrtone displays no bacteriolytic activity, as determined by measurement of the optical density at 620 nm. A rhodomyrtone killing test with S. mutans using phase contrast microscopy showed that this compound caused a few morphological changes as the treated cells were slightly changed in color and bigger than the control when they were killed. Taken together, the results support the view that rhodomyrtone has a strong bactericidal activity on Gram-positive bacteria, including major pathogens.  相似文献   

10.
《Small Ruminant Research》2009,82(2-3):163-166
The aim of this study was to explore the possibility of increasing the ovulation rate of Malpura, a non-prolific tropical breed of sheep by immunization against inhibin-based peptide immunogens. Ewes were divided into three groups (n = 5 each) and actively immunized against the synthetic peptides from the αC [bIα(1–29)-Tyr30] or αN [bI-43-Tyr152(153–167)Cys168] area of the bovine inhibin α-subunit conjugated to ovalbumin or against ovalbumin (control). Each ewe received a primary immunization of 400 μg immunogen and 3 boosters, each of 200 μg immunogen at 4-week intervals. Estrus was synchronized using a double PGF2α injection schedule and laparoscopy was performed after each estrus to determine the ovulation response. Immunization against both the peptides did not affect the interval from PGF treatment to the onset of estrus, the duration of estrus and the number of large unovulated follicles. In contrast to the complete absence of multiple ovulations in the controls, all the ewes immunized against αC or αN peptides showed multiple ovulations (range 2–7) in all the three estrous cycles evaluated, except for one ewe immunized against the αN peptide, which exhibited multiple ovulations in only 1 out of the 3 estrous cycles. Compared to that of the controls (1.0 ± 0.9, 1.0 ± 0.0 and 0.6 ± 0.2, respectively), the mean ovulation rate was higher (P < 0.01) in the ewes immunized against the αC (4.8 ± 1.02, 5.0 ± 1.05 and 5.0 ± 0.45, respectively) or against αN (4.5 ± 1.19, 2.5 ± 0.87 and 2.7 ± 0.75, respectively, P < 0.05) peptide in estrous cycles numbers 1, 2 and 3. These results show that active immunization against inhibin-based peptide immunogens is effective in increasing ovulation rate in Malpura, a non-prolific breed of sheep and that it may be an alternative to conventional superovulation regimes.  相似文献   

11.
The effects of red sap from Croton lechleri (SdD), Euphorbiaceae, on vascular and gastric smooth muscles were investigated. SdD, from 10 to 1000 μg/ml, induced concentration-dependent vasoconstriction in rat caudal arteries, which was endothelium-independent. In arterial preparations pre-constricted by phenylephrine (0.1 μM) or KCl (30 mM), SdD also produced concentration-dependent vasoconstriction. To study the mechanisms implicated in this effect we used selective inhibitors such as prazosin (0.1 μM), an antagonist of α1-adrenoceptors, atropine (0.1 μM), an antagonist of muscarinic receptors, and ritanserin (50 nM), a 5-HT2A antagonist; none of these influenced vasoconstriction caused by SdD. Likewise, nifedipine (50 nM), an inhibitor of L-type calcium channels, did not modify the action of SdD. Capsaicin (100 nM), an agonist of vanilloid receptors, also did not affect vasoconstriction by SdD.We also investigated the action of SdD (10–1000 μg/ml) on rat gastric fundus; per se the sap slightly increased contractile tension. When the gastric fundus was pre-treated with SdD (100 μg/ml) the contraction induced by carbachol (1 μM) was increased, whereas that by KCl (60 mM) or capsaicin (100 nM) were unchanged.The data shows that SdD increased contractile tension in a concentration-dependent way, both on vascular and gastric smooth muscles. The vasoconstriction is unrelated to α1, M, 5-HT2A and vanilloid receptors as well as L-type calcium channels. SdD increased also contraction by carbachol on rat gastric fundus. Thus for the first time, experimental data provides evidence that sap from C. lechleri owns constricting activity on smooth muscles.  相似文献   

12.
Currently, antimicrobial peptides have attracted considerable attention because of their broad-sprectum activity and low prognostic to induce antibiotic resistance. In our study, for the first time, a series of side-chain hybrid dimer peptides J-AA (Anoplin-Anoplin), J-RR (RW-RW), and J-AR (Anoplin-RW) based on the wasp peptide Anoplin and the arginine- and tryptophan-rich hexapeptide RW were designed and synthesized by click chemistry, with the intent to improve the antimicrobial efficacy of peptides against bacterial pathogens. The results showed that all dimer analogues exhibited up to a 4–16 fold increase in antimicrobial activity compared to the parental peptides against bacterial strains. Furthermore, the antimicrobial activity was confirmed by time-killing kinetics assay with two strains which showed that these dimer analogues at 1, 2 × MIC were rapidly bactericidal and reduced the initial inoculum significantly during the first 2–6 h. Notably, dimer peptides showed synergy and additivity effects when used in combination with conventional antibiotics rifampin or penicillin respectively against the multidrug-resistant strains. In the Escherichia coli-infected mouse model, all of hybrid dimer analogues had significantly lower degree of bacterial load than the untreated control group when injected once i.p. at 5 mg/kg. In addition, the infected mice by methicillin-resistant (MRSA) strain could be effectively treated with J-RR. All of dimer analogues had membrane-active action mode. And the membrane-dependent mode of action signifies that peptides functions freely and without regard to conventional resistant mechanisms. Circular dichroism analyses of all dimer analogues showed a general predominance of α-helix conformation in 50% trifluoroethanol (TFE). Additionally, the acute toxicities study indicated that J-RR or J-AR did not show the signs of toxicity when adult mice exposed to concentration up to 120 mg/kg. The 50% lethal dose (LD50) of J-AA was 53.6 mg/kg. In conclusion, to design and synthesize side chain-hybrid dimer analogues via click chemistry may offer a new strategy for antibacterial therapeutic option.  相似文献   

13.
We have recently characterized bicarinalin as the most abundant peptide from the venom of the ant Tetramorium bicarinatum. This antimicrobial peptide is active against Staphylococcus and Enterobacteriaceae. To further investigate the antimicrobial properties of this cationic and cysteine-free peptide, we have studied its antibacterial, antifungal and antiparasitic activities on a large array of microorganisms. Bicarinalin was active against fifteen microorganisms with minimal inhibitory concentrations ranging from 2 and 25 μmol L−1. Cronobacter sakazakii, Salmonella enterica, Candida albicans, Aspergilus niger and Saccharomyces cerevisiae were particularly susceptible to this novel antimicrobial peptide. Resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa and C. albicans were as susceptible as the canonical strains. Interestingly, bicarinalin was also active against the parasite Leishmania infantum with a minimal inhibitory concentrations of 2 μmol L−1. The bicarinalin pre-propeptide cDNA sequence has been determined using a combination of degenerated primers with RACE PCR strategy. Interestingly, the N-terminal domain of bicarinalin pre-propeptide exhibited sequence similarity with the pilosulin antimicrobial peptide family previously described in the Myrmecia venoms. Moreover, using SYTOX green uptake assay, we showed that, for all the tested microorganisms, bicarinalin acted through a membrane permeabilization mechanism. Two dimensional-NMR experiments showed that bicarinalin displayed a 10 residue-long α-helical structure flanked by two N- and C-terminal disordered regions. This partially amphipathic helix may explain the membrane permeabilization mechanism of bicarinalin observed in this study. Finally, therapeutic value of bicarinalin was highlighted by its low cytotoxicity against human lymphocytes at bactericidal concentrations and its long half-life in human serum which was around 15 h.  相似文献   

14.
A 43-member 1,2-dioxolane library was synthesized by coupling a 1,2-dioxolane-3-acetic acid derivative to a range of amines. Ten compounds had EC50s ? 30 nM against Plasmodium falciparum 3D7 and Dd2 strains, and another 15 compounds had EC50s ? 50 nM against both 3D7 and Dd2. The library was then subjected to a range of in vitro DMPK assays, which revealed that side chains with a heteroatom were required for favorable solubility, Log D and membrane permeability. CYP450 inhibition was isoform dependent, with 2C19 and 3A4 particularly susceptible, and the majority of compounds tested against rat and human microsomes were metabolized rapidly.  相似文献   

15.
Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed > 90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future.  相似文献   

16.
《Phytomedicine》2014,21(12):1689-1694
Protozoan diseases, such as leishmaniasis, are a cause of considerable morbidity throughout the world, affecting millions every year. In this study, two triterpenic acids (maslinic and oleanolic acids) were isolated from Tunisian olive leaf extracts and their in vitro activity against the promastigotes stage of Leishmania (L.) infantum and Leishmania (L.) amazonensis was investigated. Maslinic acid showed the highest activity with an IC50 of 9.32 ± 1.654 and 12.460 ± 1.25 μg/ml against L. infantum and L. amazonensis, respectively. The mechanism of action of these drugs was investigated by detecting changes in the phosphatidylserine (PS) exposure, the plasma membrane permeability, the mitochondrial membrane potential and the ATP level production in the treated parasites. By using the fluorescent probe SYTOX® Green, both triterpenic acids showed that they produce a time-dependent plasma membrane permeabilization in the treated Leishmania species. In addition, spectrofluorimeteric data revealed the surface exposure of PS in promastigotes. Both molecules reduced the mitochondrial membrane potential and decreased the ATP levels to 15% in parasites treated with IC90 for 24 h. We conclude that the triterpenic acids tested in this study, show potential as future therapeutic alternative against leishmaniasis. Further studies are needed to confirm this.  相似文献   

17.
An efficient synthesis of 29 new binaphthyl-based neutral, and mono- and di-cationic, peptoids is described. Some of these compounds had antibacterial activities with MIC values of 1.9–3.9 μg/mL against Staphylococcus aureus. One peptoid had a MIC value of 6 μg/mL against a methicillin-resistant strain of S. aureus (MRSA) and a MIC value of 2 μg/mL against vancomycin-resistant strains of enterococci (VRE).  相似文献   

18.
Streptococcus suis serotype 2 is known to cause severe infections in pigs, including meningitis, endocarditis and pneumonia. Furthermore, this bacterium is considered an emerging zoonotic agent. Recently, increased antibiotic resistance in S. suis has been reported worldwide. The objective of this study was to evaluate the potential of nisin, a bacteriocin of the lantibiotic class, as an antibacterial agent against the pathogen S. suis serotype 2. In addition, the synergistic activity of nisin in combination with conventional antibiotics was assessed. Using a plate assay, the nisin-producing strain Lactococcus lactis ATCC 11454 proved to be capable of inhibiting the growth of S. suis (n = 18) belonging to either sequence type (ST)1, ST25, or ST28. In a microdilution broth assay, the minimum inhibitory concentration (MIC) of purified nisin ranged between 1.25 and 5 μg/mL while the minimum bactericidal concentration (MBC) was between 5 and 10 μg/mL toward S. suis. The use of a capsule-deficient mutant of S. suis indicated that the presence of this polysaccharidic structure has no marked impact on susceptibility to nisin. Following treatment of S. suis with nisin, transmission electron microscopy observations revealed lysis of bacteria resulting from breakdown of the cell membrane. A time-killing curve showed a rapid bactericidal activity of nisin. Lastly, synergistic effects of nisin were observed in combination with several antibiotics, including penicillin, amoxicillin, tetracycline, streptomycin and ceftiofur. This study brought clear evidence supporting the potential of nisin for the prevention and treatment of S. suis infections in pigs.  相似文献   

19.
Nicotinic acetylcholine receptors are ligand-gated ion channels found in the plasma membrane of both excitable and non-excitable cells. Previously we reported that nicotinic receptors containing α7 subunits were present in the outer membranes of mitochondria to regulate the early apoptotic events like cytochrome c release. Here we show that signaling of mitochondrial α7 nicotinic receptors affects intramitochondrial protein kinases. Agonist of α7 nicotinic receptors PNU 282987 (30 nM) prevented the effect of phosphatidyl inositol-3-kinase inhibitor wortmannin, which stimulated cytochrome c release in isolated mouse liver mitochondria, and restored the Akt (Ser 473) phosphorylation state decreased by either 90 μM Ca2+ or wortmannin. The effect of PNU 282987 was similar to inhibition of calcium-calmodulin-dependent kinase II (upon 90 μM Ca2+) or of Src kinase(s) (upon 0.5 mM H2O2) and of protein kinase C. Cytochrome c release from mitochondria could be also attenuated by α7 nicotinic receptor antagonist methyllicaconitine or α7-specific antibodies. Allosteric modulator PNU 120526 (1 μM) did not improve the effect of agonist PNU 282987. Acetylcholine (1 μM) and methyllicaconitine (10 nM) inhibited superoxide release from mitochondria measured according to alkalization of Ca2+-containing medium. It is concluded that α7 nicotinic receptors regulate mitochondrial permeability transition pore formation through ion-independent mechanism involving activation of intramitochondrial PI3K/Akt pathway and inhibition of calcium-calmodulin-dependent or Src-kinase-dependent signaling pathways.  相似文献   

20.
We have previously reported that AmyI-1-18, an octadecapeptide derived from α-amylase (AmyI-1) of rice, is a novel cationic α-helical peptide that exhibited antimicrobial activity against human pathogens, including Porphyromonas gingivalis, Pseudomonas aeruginosa, Propionibacterium acnes, Streptococcus mutans, and Candida albicans. In this study, to further investigate the potential functions of AmyI-1-18, we examined its inhibitory ability against the endotoxic activities of lipopolysaccharides (LPSs, smooth and Rc types) and lipid A from Escherichia coli. AmyI-1-18 inhibited the production of endotoxin-induced nitric oxide (NO), an inflammatory mediator, in mouse macrophages (RAW264) in a concentration-dependent manner. The results of a chromogenic Limulus amebocyte lysate assay illustrated that the ability [50% effective concentration (EC50): 0.17 μM] of AmyI-1-18 to neutralize lipid A was similar to its ability (EC50: 0.26 μM) to neutralize LPS, suggesting that AmyI-1-18 specifically binds to the lipid A moiety of LPS. Surface plasmon resonance analysis of the interaction between AmyI-1-18 and LPS or lipid A also suggested that AmyI-1-18 directly binds to the lipid A moiety of LPS because the dissociation constant (KD) of AmyI-1-18 with lipid A is 5.6 × 10−10 M, which is similar to that (4.3 × 10−10 M) of AmyI-1-18 with LPS. In addition, AmyI-1-18 could block the binding of LPS-binding protein to LPS, although its ability was less than that of polymyxin B. These results suggest that AmyI-1-18 expressing antimicrobial and endotoxin-neutralizing activities is useful as a safe and potent host defense peptide against pathogenic Gram-negative bacteria in many fields of healthcare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号