首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarcoplasmic/endoplasmic reticulum (ER) Ca(2+) is the most abundant store of intracellular Ca(2+), and its release is an important trigger of physiological and cell death pathways. Previous work in our laboratory revealed the importance of ER Ca(2+) in toxicant-induced renal proximal tubular cell (RPTC) death. The purpose of this study was to evaluate the use of confocal microscopy and Fluo5F, a low affinity Ca(2+) indicator, to directly monitor changes in RPTC ER Ca(2+). Fluo5F staining reflected ER Ca(2+), resolved ER structure, and showed no colocalization with tetramethyl rhodamine methyl ester (TMRM), a marker of mitochondrial membrane potential. Thapsigargin, an ER Ca(2+) pump inhibitor, decreased ER fluorescence by 30% and 55% at 5 and 15 min, respectively, whereas A23187, a Ca(2+) ionophore caused more rapid ER Ca(2+) release (55% and 75% decrease in fluorescence at 5 and 15 min). Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler, added at the end of the experiment, further decreased ER fluorescence after thapsigargin treatment, revealing that thapsigargin did not release all ER Ca(2+). In contrast, FCCP did not decrease ER fluorescence after A23187 treatment, suggesting complete ER Ca(2+) release. ER Ca(2+) release in response to A23187 or thapsigargin resulted in a modest but significant decrease in mitochondrial membrane potential. These data provide evidence that confocal microscopy and Fluo5F are useful and effective tools for directly monitoring ER Ca(2+) in live cells.  相似文献   

2.
Sarcoplasmic/endoplasmic reticulum (ER) Ca2+ is the most abundant store of intracellular Ca2+, and its release is an important trigger of physiological and cell death pathways. Previous work in our laboratory revealed the importance of ER Ca2+ in toxicant-induced renal proximal tubular cell (RPTC) death. The purpose of this study was to evaluate the use of confocal microscopy and Fluo5F, a low affinity Ca2+ indicator, to directly monitor changes in RPTC ER Ca2+. Fluo5F staining reflected ER Ca2+, resolved ER structure, and showed no colocalization with tetramethyl rhodamine methyl ester (TMRM), a marker of mitochondrial membrane potential. Thapsigargin, an ER Ca2+ pump inhibitor, decreased ER fluorescence by 30% and 55% at 5 and 15 min, respectively, whereas A23187, a Ca2+ ionophore caused more rapid ER Ca2+ release (55% and 75% decrease in fluorescence at 5 and 15 min).Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler, added at the end of the experiment, further decreased ER fluorescence after thapsigargin treatment, revealing that thapsigargin did not release all ER Ca2+. In contrast, FCCP did not decrease ER fluorescence after A23187 treatment, suggesting complete ER Ca2+ release. ER Ca2+ release in response to A23187 or thapsigargin resulted in a modest but significant decrease in mitochondrial membrane potential. These data provide evidence that confocal microscopy and Fluo5F are useful and effective tools for directly monitoring ER Ca2+ in live cells.  相似文献   

3.
Confocal scanning laser microscopy (CSLM) was used to visualise the spatial location of foulants during the fouling of Q Sepharose FF matrix in finite batch experiments and for examining the subsequent effectiveness of clean-in-place (CIP) treatments in cleaning the heavily fouled beads. Beads were severely fouled with partially clarified E. coli homogenate by contacting the beads with the foulant for contact times of 5 min, 1 or 12 h. The use of two different fluorescent dyes, PicoGreen and Cy5.5, for labelling genomic PicoGreen-labelled dsDNA and protein respectively, allowed the direct observation of the chromatographic beads. The extent of fouling was assessed by measuring the subsequent adsorption of Cy5.5-labelled BSA to the beads. Control studies established that the labelling of BSA did not affect significantly the protein properties. In the control case of contacting the unfouled matrix with Cy5.5-labelled BSA, protein was able to penetrate the entire matrix volume. After fouling, Cy5.5-labelled BSA was unable to penetrate the bead but only to bind near the bead surface where it slowly displaced PicoGreen-conjugated dsDNA, which bound only at the exterior of the beads. Labelled host cell proteins bound throughout the bead interior but considerably less at the core; suggesting that other species might have occupied that space. The gross levels of fouling achieved drastically reduced the binding capacity and maximum Cy5.5-labelled BSA uptake rate. The capacity of the resin was reduced by 2.5-fold when incubated with foulant for up to 1 h. However, when the resin was fouled for a prolonged time of 12 h a further sixfold decrease in capacity was seen. The uptake rate of Cy5.5-labelled BSA decreased with increased fouling time of the resin. Incubating the fouled beads in 1 M NaCl dissociated PicoGreen-labelled dsDNA from the bead exterior within 15 min of incubation but proved ineffective in removing all the foulant protein. Cy5.5-labelled BSA was still unable to bind beyond the outer region of the beads. A harsher CIP treatment of 1 M NaCl dissolved in 1 M NaOH was also ineffective in removing all the foulant protein but did remove PicoGreen-conjugated dsDNA within 15 min of incubation. Cy5.5-labelled BSA was able to bind throughout the bead interior after this more aggressive CIP treatment but at a lower capacity than in the case of fresh beads. The competitive adsorption of BacLight Red-labelled whole cells or cell debris and PicoGreen-conjugated dsDNA was also visualised using CSLM.  相似文献   

4.
It is necessary to understand liposomal uptake mechanisms and intracellular distribution in order to design more efficient gene (drug) carrier systems. Until now, a few studies have been carried out using confocal laser scanning microscopy (CLSM) to investigate the cellular uptake and transfection mediated with liposomes. So, by CLSM, we demonstrated that artificial virus-like envelope (AVE) vesicles labeled with rhodamine-PE (Rh-PE), carbocyanine (DiI) and carboxyfluorescein (CF) were investigated into the cytoplasm of two human cell lines, Mewo (human melanoma cell line) and HepG2 (human hepatoma cell line) cells grown in DMEM medium supplemented with different percentages (0%, 30%, and 100%) fetal calf serum (FCS). The liposome uptake was dependent on the cell line, in view that the whole process of liposomes associated with cells (uptake) is a two-step process involving binding and endocytosis. Based upon the various assays used to measure cellular uptake of liposomes, we conclude the efficacy of cytoplasmic delivery by AVE-liposomes to cells in culture.  相似文献   

5.
6.
The presence of 8-oxoguanine (8-oxoG) in DNA is considered a marker of oxidative stress and DNA damage. We describe a multifluorescence technique to detect the localization of 8-oxoG in both nuclear and mitochondrial DNA using a mouse recombinant Fab 166. The Fab was generated by repertoire cloning and combinatorial phage display, and specifically recognized 8-oxoG in DNA, as determined by competitive enzyme-linked immunosorbent assays (ELISAs). In situ detection of 8-oxoG was accomplished using rat lung epithelial (RLE) cells and human B lymphoblastoid (TK6) cells treated with hydrogen peroxide (H(2)O(2)) or ionizing radiation, respectively. Using confocal scanning laser microscopy, we observed nuclear and perinuclear immunoreactivity of 8-oxoG in control cultures. The simultaneous use of a nuclear DNA stain, propidium iodide, or the mitochondrial dye, MitoTracker (Molecular Probes, Eugene, OR, USA), confirmed that 8-oxoG immunofluorescence occurred in nuclear and mitochondrial DNA. Marked increases in the presence of 8-oxoG in nuclear DNA were apparent after treatment with H(2)O(2) or ionizing radiation. In control experiments, Fab 166 was incubated with 200 microM purified 8-oxodG or with formamidopyrimidine DNA-glycosylase (Fpg) to remove 8-oxoG lesions in DNA. These protocols attenuated both nuclear and mitochondrial staining. We conclude that both nuclear and mitochondrial oxidative DNA damages can be simultaneously detected in situ using immunofluorescence labeling with Fab 166 and confocal microscopy.  相似文献   

7.
This study explored the feasibility of using immunofluorescence labelling in conjunction with confocal laser scanning microscopy (CLSM) for detection of common fungal colonisers of unseasoned radiata pine in New Zealand. Wood sections infected with Ophiostoma piceae were treated with monoclonal antibody IF3 (1), and then Oregon green 514 goat anti-mouse IgG, a fluorescent secondary antibody. Additional wood sections infected with other Ophiostoma spp., Sphaeropsis sapinea, Leptographium procerum, Trichoderma sp. and Phlebiopsis gigantea were treated similarly to determine whether the antibody was specific to O. piceae or was recognising other fungal species. Sections were examined using phase contrast and fluorescence light microscopy prior to CLSM. Immunolabelled fungal hyphae showed relatively weak fluorescence compared to the strong autofluorescence of wood cell walls and extractives. Labelled hyphae of O. piceae were detected in wood using CLSM but not with ordinary fluorescence microscopy. This is because CLSM has stronger illumination power and superior imaging ability compared with ordinary fluorescence microscopy. The monoclonal antibody did not cross-react with the other Ophiostoma species. However, non-specific antibody binding was observed with L. procerum and Trichoderma species. Furthermore, cell walls of L. procerum showed strong autofluorescence with optical properties similar to wood extractives when examined prior to incubation with the monoclonal and secondary antibody, therefore cross-reactivity tests were inconclusive for Leptographium and Trichoderma species. The current investigation demonstrated that CLSM provides possibilities for future investigations on in situ interactions of common radiata pine fungal colonisers, with one another and with wood.  相似文献   

8.
The methods of confocal laser scanning microscopy (CLSM) and microinjection were used to study ABA-induced H2O2 in guard cells (Vicia faba), which were labeled with H2O2 specific probe-2, 7-dichlorofluorescin diacetate(H2DCFDA). The results indicated 100 U/mL catalase (CAT) could inhibit partly stomatal closure induced by ABA. 10(-3) mmol/L ABA could significantly induce H2O2 production in chloroplast in guard cells of Vicia faba following microinjection, and 100 U/mL CAT could partly abolish the effects following simultaneous microinjection of ABA and CAT. These suggest that H2O2 is possibly involved in ABA signaling leading to stomatal closure.  相似文献   

9.
We have employed a laser scanning confocal microscope in reflection mode to directly and indirectly visualize sites of deposition of silver-enhanced reaction products from colloidal gold probes. A direct approach was used for the localization of alpha-fetoprotein receptors in human myoblasts by incubating primary cultures with an alpha-fetoprotein-gold conjugate. For an indirect approach, cultured CEM cells, derived from a human T-lymphoma cell line, were incubated with a mouse monoclonal antibody to mature T-cells, followed by a gold-labelled antibody to mouse immunglobulins. Multiple optical sections of each sample were collected by reflection laser scanning confocal microscopy and combined into three-dimensional renderings. A (non-confocal) transmission image was generated of each field for comparative purposes. The increasing use of reflection laser scanning confocal microscopy combined with colloidal gold conjugates as biological markes will probably be of considerable advantage in cytochemical analysis.  相似文献   

10.
Glucuronidation, catalyzed by UDP-glucuronosyltransferases (UGT) and sulfation, catalyzed by sulfotransferases (SULT), are pathways through which sex steroids are metabolized to less active compounds. These enzymes are highly polymorphic and genetic variants frequently result in higher or lower activity. The phenotypic effects of these polymorphisms on circulating sex steroids in premenopausal women have not yet been investigated. One hundred and seventy women aged 40-45 years had a blood sample drawn during the follicular phase of the menstrual cycle for sex steroid measures and to obtain genomic DNA. Urine was collected for 2-hydroxy (OH) estrone (E(1)) and 16α-OH E(1) measures. Generalized linear regression models were used to assess associations between sex steroids and polymorphisms in the UGT1A and UGT2B families, SULT1A1, and SULT1E1. Women with the UGT1A1(TA7/TA7) genotype had 25% lower mean estradiol (E(2)) concentrations compared to the wildtype (TA6/TA6) (p=0.02). Similar associations were observed between SULT1A1(R213/H213) and E(1) (13% lower mean E(1) concentration vs. wildtype; p-value=0.02) and UGT2B4(E458/E458) and dehydroepiandrosterone (DHEA) (20% lower mean DHEA vs. wildtype; p-value=0.03). The SULT1E1(A/C) and the UGT1A1(TA7)-UGT1A3(R11) haplotypes were associated with reduced estrogen concentrations. Further study of UGT and SULT polymorphisms and circulating sex steroid measures in larger populations of premenopausal women is warranted.  相似文献   

11.
本文利用激光扫描共聚焦显微技术(Laserscanningconfocalmicroscopy,LSCM)对大草履虫(Parameciumcaudatum)口胞器及消化胞器进行了再观察,通过连续断层扫描和三维重建技术,清晰地显示出草履虫口胞器中前庭、口腔、内口膜、四分膜、背咽膜、腹咽膜等结构,它们的位置和形态与前人的工作结果基本一致,并给出口胞器结构的三维立体构象。观察了虫体内的食物泡及其形成过程。看到胞咽在摄食并形成食物泡时其直径变大的现象,表明Allen(1974)有关消化后期食物泡产生的微小泡回到胞咽处与胞咽膜融合的时间应该是在胞咽直径扩大时,此时微小泡参与到胞咽膜上,进而再参与到新食物泡膜的形成过程中,由此完成膜的循环再利用。在样品制备中采用KMnO4替代了免疫荧光技术中传统的固定剂,固定效果很好,清楚地显示了胞咽膜、纤毛以及食物泡膜的结构  相似文献   

12.
Fukumoto T  Hayashi N  Sasamoto H 《Planta》2005,223(1):40-45
Efficiency of novel fiber formation was much improved in protoplast culture of embryogenic cells (ECs) of a conifer, Larix leptolepis (Sieb. et Zucc.) Gord., by pre-culturing ECs in a medium containing a high concentration of glutamine (13.7 mM). The fibrillar substructures of large and elongated fibers of protoplasts isolated from Larix ECs were investigated by laser confocal scanning microscopy (LCSM) after Aniline Blue staining and atomic force microscopy (AFM) using a micromanipulator without any pre-treatment. Fibers were composed of bundles of fibrils and subfibrils, whose diameters were defined as 0.7 and 0.17 μm, respectively, by image analysis after LCSM and AFM. These fibers were proven to be composed of callose by using specific degrading enzymes for β-1,4-glucan and β-1,3-glucan.  相似文献   

13.
Introduction Excess of intracellular reactive oxygen species in relation to antioxidative systems results in an oxidative environment which may modulate gene expression or damage cellular molecules. These events are expected to greatly contribute to processes of carcinogenesis. Only few studies are available on the oxidative/reductive conditions in the colon, an important tumour target tissue. It was the objective of this work to further develop methods to assess intracellular oxidative stress within human colon cells as a tool to study such associations in nutritional toxicology.

Methods We have measured H2O2-induced oxidative stress in different colon cell lines, in freshly isolated human colon crypts, and, for comparative purposes, in NIH3T3 mouse embryo fibroblasts. Detection was performed by loading the cells with the fluorigenic peroxide-sensitive dye 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (diacetoxymethyl ester), followed by in vitro treatment with H2O2 and fluorescence detection with confocal laser scanning microscopy (CLSM). Using the microgel electrophoresis (“Comet”) Assay, we also examined HT29 stem and clone 19A cells and freshly isolated primary colon cells for their relative sensitivity toward H2O2-induced DNA damage and for steady-state levels of endogenous oxidative DNA damage.

Results A dose-response relationship was found for the H2O2-induced dye decomposition in NIH3T3 cells (7.8-125 μM H2O2) whereas no effect occurred in the human colon tumour cell lines HT29 stem and HT29 clone 19A (62-1000 μM H2O2). Fluorescence was significantly increased at 62 μM H2O2 in the human colon adenocarcinoma cell line Caco-2. In isolated human colon crypts, the lower crypt cells (targets of colon cancer) were more sensitive towards H2O2 than the more differentiated upper crypt cells. In contrast to the CLSM results, oxidative DNA damage was detected in both cell lines using the Comet Assay. Endogenous oxidative DNA damage was highest in HT29 clone 19A, followed by the primary colon cells and HT29 stem cells.

Conclusions Oxidative stress in colon cells leads to damage of macromolecules which is sensitively detected in the Comet Assay. The lacking response of the CLSM-approach in colon tumour cells is probably due to intrinsic modes of protective activities of these cells. In general, however, the CLSM method is a sensitive technique to detect very low concentrations of H2O2-induced oxidative stress in NIH3T3 cells. Moreover, by using colon crypts it provides the unique possibility of assessing cell specific levels of oxidative stress in explanted human tissues. Our results demonstrate that the actual target cells of colon cancer induction are indeed susceptible to the oxidative activity of H2O2.  相似文献   

14.
The radiosynthesis and radiopharmacological evaluation of 1-[(11)C]methoxy-4-(2-(4-(methanesulfonyl)phenyl)cyclopent-1-enyl)-benzene [(11)C]5 as novel PET radiotracer for imaging of COX-2 expression is described. The radiotracer was prepared via O-methylation reaction with [(11)C]methyl iodide in 19% decay-corrected radiochemical yield at a specific activity of 20-25GBq/mumol at the end-of-synthesis within 35 min. The radiotracer [(11)C]5 was evaluated in vitro using various pro-inflammatory and tumor cell lines showing high functional expression of COX-2 at baseline or after induction. In vivo biodistribution of compound [(11)C]5 was characterized in male Wistar rats. Compound [(11)C]5 was rapidly metabolized in rat plasma, and more pronounced, in mouse plasma. In vivo kinetics and tumor uptake were demonstrated by dynamic small animal PET studies in a mouse tumor xenograft model. Tumor uptake of radioactivity was clearly visible overtime. However, radioactivity uptake in the tumor could not be blocked by the pre-injection of nonradioactive compound 5. Therefore, it can be concluded that radioactivity uptake in the tumor was not COX-2 mediated.  相似文献   

15.
 We describe a multifluorescence labeling technique for simultaneous detection of mRNA, nuclear DNA, and apoptosis in cultured cells. Digoxigenin-labeled cRNA probes were used to study proto-oncogene expression in rat pleural mesothelial cells undergoing apoptosis following exposure to crocidolite asbestos or hydrogen peroxide (H202). Hybridized cRNA probe was detected by immunolocalization with an anti-digoxigenin monoclonal primary and fluorophore-conjugated anti-mouse secondary antibody. Cells undergoing apoptosis were simultaneously identified by the TdT-mediated biotin-dUTP nick-end labeling (TUNEL) method and a streptavidin-conjugated far-red fluorophore, and nuclear DNA was stained with oxazole yellow dimer (YOYO-1). With confocal scanning laser microscopy, we demonstrated increased c-jun mRNA expression within the cytoplasm of both TUNEL-positive and non-apoptotic cells following exposure to either crocidolite asbestos or H202. Thus, this technique represents a useful in vivo approach for evaluating apoptosis-associated gene expression with confocal scanning laser microscopy. Accepted: 22 July 1997  相似文献   

16.
17.
The development of a minimally invasive, robust, and inexpensive technique that permits real-time monitoring of cell responses on biomaterial scaffolds can improve the eventual outcomes of scaffold-based tissue engineering strategies. Towards establishing correlations between in situ biological activity and cell fate, we have developed a comprehensive workflow for real-time volumetric imaging of spatiotemporally varying cytosolic calcium oscillations in pure microglial cells cultured on electrospun meshes. Live HMC3 cells on randomly oriented electrospun fibers were stained with a fluorescent dye and imaged using a laser scanning confocal microscope. Resonance scanning provided high-resolution in obtaining the time-course of intracellular calcium levels without compromising spatial and temporal resolution. Three-dimensional reconstruction and depth-coding enabled the visualization of cell location and intracellular calcium levels as a function of sample thickness. Importantly, changes in cell morphology and in situ calcium spiking were quantified in response to a soluble biochemical cue and varying matrix architectures (i.e., randomly oriented and aligned fibers). Importantly, raster plots generated from spiking data revealed calcium signatures specific to culture conditions. In the future, our approach can be used to elucidate correlations between calcium signatures and cell phenotype/activation, and facilitate the rational design of scaffolds for biomedical applications.  相似文献   

18.
Microscopy has become an essential tool for cellular protein investigations. The development of new fluorescent markers such as green fluorescent proteins generated substantial opportunities to monitor protein-protein interactions qualitatively and quantitatively using advanced fluorescence microscope techniques including wide-field, confocal, multiphoton, spectral imaging, lifetime, and correlation spectroscopy. The specific aims of the investigation of protein dynamics in live specimens dictate the selection of the microscope methodology. In this article confocal and spectral imaging methods to monitor the dimerization of alpha enhancer binding protein (C/EBPalpha) in the pituitary GHFT1-5 living cell nucleus have been described. Also outline are issues involved in protein imaging using light microscopy techniques and the advantages of lifetime imaging of protein-protein interactions.  相似文献   

19.
Changes in intracellular calcium concentration ([Ca2+]i) in smooth muscle cells play the key role in regulation of vascular smooth muscle tone and pathogenesis of cerebral vasospasm. In this study, we adopted the confocal laser microscopy to detect the fluorescence signals arising from the individual smooth muscle cells of canine basilar artery. Ring preparations were made, loaded with fluo-3 and changes in fluorescence induced by high K+ and endothelin-1 (ET-1) were measured by confocal laser microscopy. In some unstimulated smooth muscle cells Ca2+ waves arising from discrete region of the cell propagated to the whole cell with a velocity of approximately 10 microm/s. High K+ (80 mmol/L) induced a rapid rise in [Ca2+]i, the peak level being consistently reached approximately 10 s after stimulation. In contrast, the time to peak level of [Ca2+]i induced by ET-1 (0.3 micromol/L) varied widely between 13 and 26 s among individual cells, an indication that the extent of nonuniform coordination of increases in [Ca2+]i in individual cells may be partly responsible for the different time courses of tension development of vascular smooth muscle in response to the vasoactive stimulants. The increase in [Ca2+]i induced by ET-1 was transient but a pronounced and sustained contraction developed further in response to ET-1. Thus ET-1 has a biological property as a potential candidate to elicit cerebral vasospasm. Confocal laser microscopy could be a useful tool to measure the changes in [Ca2+]i in individual smooth muscle cells of cerebral artery.  相似文献   

20.
Mechanical properties of the adventitia are largely determined by the organization of collagen fibers. Measurements on the waviness and orientation of collagen, particularly at the zero-stress state, are necessary to relate the structural organization of collagen to the mechanical response of the adventitia. Using the fluorescence collagen marker CNA38-OG488 and confocal laser scanning microscopy, we imaged collagen fibers in the adventitia of rabbit common carotid arteries ex vivo. The arteries were cut open along their longitudinal axes to get the zero-stress state. We used semi-manual and automatic techniques to measure parameters related to the waviness and orientation of fibers. Our results showed that the straightness parameter (defined as the ratio between the distances of endpoints of a fiber to its length) was distributed with a beta distribution (mean value 0.72, variance 0.028) and did not depend on the mean angle orientation of fibers. Local angular density distributions revealed four axially symmetric families of fibers with mean directions of 0°, 90°, 43° and ?43°, with respect to the axial direction of the artery, and corresponding circular standard deviations of 40°, 47°, 37° and 37°. The distribution of local orientations was shifted to the circumferential direction when measured in arteries at the zero-load state (intact), as compared to arteries at the zero-stress state (cut-open). Information on collagen fiber waviness and orientation, such as obtained in this study, could be used to develop structural models of the adventitia, providing better means for analyzing and understanding the mechanical properties of vascular wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号