首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
26S蛋白酶体是真核细胞内负责蛋白质降解的主要分子机器,通过特异性降解目的蛋白质,几乎参与了生物体的绝大多数生命活动.26S蛋白酶体在结构上可分为19S调节颗粒和20S核心颗粒两部分.19S调节颗粒负责识别带有泛素链标记的蛋白质底物及对其进行去折叠,并最终将去折叠的蛋白质底物传送至20S核心颗粒中进行降解.由于26S蛋白酶体的结构组成复杂,分子量十分巨大,现有的X-ray技术和NMR技术对其完整结构的解析都无能为力,仅能解析出部分单个蛋白成员或分子量较低的亚复合物晶体结构.而冷冻电镜技术在相当一段时间内处于发展的初级阶段,导致其三维结构的研究进展曾经十分缓慢,严重阻碍了人们对其结构和功能的了解.近年来,随着在X-ray技术领域对大分子复合物结构解析的经验积累和冷冻电镜技术领域的技术革命,完整的26S蛋白酶体三维结构解析取得了飞速的发展.本文回顾了近几年在26S蛋白酶体结构生物学领域的重要进展,并展望了该领域未来的发展及面临的挑战.  相似文献   

2.
The 26S proteasome is an eukaryotic ATP-dependent, dumbbell-shaped protease complex with a molecular mass of approximately 2000 kDa. It consists of a central 20S proteasome, functioning as a catalytic machine, and two large V-shaped terminal modules, having possible regulatory roles, composed of multiple subunits of 25–110 kDa attached to the central portion in opposite orientations. The primary structures of all the subunits of mammalian and yeast 20S proteasomes have been determined by recombinant DNA techniques, but structural analyses of the regulatory subunits of the 26S proteasome are still in progress. The regulatory subunits are classified into two subgroups, a subgroup of at least 6 ATPases that constitute a unique multi-gene family encoding homologous polypeptides conserved during evolution and a subgroup of approximately 15 non-ATPase subunits, most of which are structurally unrelated to each other.  相似文献   

3.
The 26S proteasome plays an essential role in regulating many cellular processes by the degradation of proteins targeted for breakdown by ubiquitin conjugation. The 26S complex is formed from the 20S core, which contains the proteolytic active sites, and 19S regulatory complexes, which bind to the 20S core to activate it and confer specificity for ubiquitinated protein substrates. We have determined the structure of the human 26S proteasome by electron microscopy and single particle analysis. In our reconstructions the crystallographic structure of each of the subunits of the 20S core can be unambiguously docked by direct recognition of each of their densities. Our results show for the first time that binding of the 19S regulatory particle results in the radial displacement of the adjacent subunits of the 20S core leading to opening of a wide channel into the proteolytic chamber. The analysis of a proteasome complex formed from one 20S core with a single 19S regulatory particle attached serve as control to our observations. We suggest locations for some of the 19S regulatory particle subunits.  相似文献   

4.
Molecular model of the human 26S proteasome   总被引:1,自引:0,他引:1  
  相似文献   

5.
26S proteasome is a multi-subunit protein complex that consists of the regulatory 19S and the catalytic 20S subcomplexes. The major cellular function of the proteasome is protein degradation. It has been found recently that the 20S particle, besides its proteolytic activity, also possesses endoribonuclease activity. The latter is mediated by two alpha-type subunits (alpha1 and alpha5). In this report we have analyzed the remaining alpha-type subunits for their ability to hydrolyze RNA. We found that all of the recombinant subunits tested exhibited endoribonuclease activity which depended on the origin of RNA and the presence of bivalent ions in the reaction. These results indicate that the endoribonuclease activity of proteasomes may play an important role in cellular metabolism of RNA.  相似文献   

6.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

7.
Horiguchi R  Dohra H  Tokumoto T 《Proteomics》2006,6(14):4195-4202
Proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. An alteration of proteasome function may be important for the regulation of the meiotic cell cycle. To study the change at the subunit level of the 26S proteasome during meiotic maturation, we purified 26S proteasomes from immature and mature oocytes of goldfish. Two-dimensional polyacrylamide gel electrophoresis was used to separate proteins. For differential analysis, whole spots of the 26S proteasome from goldfish oocytes were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and database analysis. Four spots that were different (only detected in mature oocyte 265 proteasomes and not in immature ones) and four protein spots that were up- or down-regulated were identified unambiguously. The mature-specific spots were not 26S proteasome components but rather their interacting proteins, and were identified as chaperonin-containing TCP-1 subunits and myosin light chain. Minor spots of three subunits of the 20S core particle and one of the 19S regulatory particle showed meiotic cell cycle-dependent changes. These results demonstrate that modifications of proteasomal subunits and cell cycle phase-dependent interactions of proteins with proteasomes occur during oocyte maturation in goldfish.  相似文献   

8.
The 19S regulatory complex (RC) of 26S proteasomes is a 900–1000 kDa particle composed of 18 distinct subunits (S1–S15) ranging in molecular mass from 25 to 110 kDa. This particle confers ATP-dependence and polyubiquitin (polyUb) recognition to the 26S proteasome. The symmetry and homogenous structure of the proteasome contrasts sharply with the remarkable complexity of the RC. Despite the fact that the primary sequences of all the subunits are now known, insight has been gained into the function of only eight subunits. The six ATPases within the RC constitute a subfamily (S4-like ATPases) within the AAA superfamily and we have shown that they form specific pairs in vitro[1]. We have now determined that putative coiled-coils within the variable N-terminal regions of these proteins are likely to function as recognition elements that direct the proper placement of the ATPases within the RC. We have also begun mapping putative interactions between non-ATPase subunits and S4-like ATPases. These studies have allowed us to build a model for the specific arrangement of 9 subunits within the human regulatory complex. This model agrees with recent findings by Glickman et al. [2] who have reported that two subcomplexes, termed the base and the lid, form the RC of budding yeast 26S proteasomes.  相似文献   

9.
The 26S proteasome is essential for the proteolysis of proteins that have been covalently modified by the attachment of polyubiquitinated chains. Although the 20S core particle performs the degradation, the 19S regulatory cap complex is responsible for recognition of polyubiquitinated substrates. We have focused on how the S5a component of the 19S complex interacts with different ubiquitin-like (ubl) modules, to advance our understanding of how polyubiquitinated proteins are targeted to the proteasome. To achieve this, we have determined the solution structure of the ubl domain of hPLIC-2 and obtained a structural model of hHR23a by using NMR spectroscopy and homology modeling. We have also compared the S5a binding properties of ubiquitin, SUMO-1, and the ubl domains of hPLIC-2 and hHR23a and have identified the residues on their respective S5a contact surfaces. We provide evidence that the S5a-binding surface on the ubl domain of hPLIC-2 is required for its interaction with the proteasome. This study provides structural insights into protein recognition by the proteasome, and illustrates how the protein surface of a commonly utilized fold has highly evolved for various biological roles.  相似文献   

10.
Substrate access and processing by the 20S proteasome core particle   总被引:5,自引:0,他引:5  
Intracellular proteolysis is an essential process. In eukaryotes, most proteins in the cytosol and nucleus are degraded by the ubiquitin (Ub)-proteasome pathway. A major component within this system is the 26S proteasome, a 2.5MDa molecular machine, built from more than 31 different subunits. This complex is formed by a cylinder-shaped multimeric complex referred to as the proteolytic 20S proteasome (core particle, CP) capped at each end by another multimeric component called the 19S complex (regulatory particle, RP) or PA700. Structure, assembly and enzymatic mechanism have been elucidated only for the CP, whereas the organization of the RP is less well understood. The CP is composed of 28 subunits, which are arranged as an alpha7beta7beta7alpha7-complex in four stacked rings. The interior of the free core particle, which harbors the active sites, is inaccessible for folded and unfolded substrates and represents a latent state. This inhibition is relieved upon binding of the RP to the CP by formation of the 26S proteasome holoenzyme. This review summarizes the current knowledge of the structural features of 20S proteasomes.  相似文献   

11.
The 26S proteasome (26SP) is a multi-subunit, multi-catalytic protease that is responsible for most of the cytosolic and nuclear protein turnover. The 26SP is composed of two sub-particles, the 19S regulatory particle (RP) that binds and unfolds protein targets, and the 20S core particle (20SP) that degrades proteins into small peptides. Most 26SP targets are conjugated to a poly-ubiquitin (Ub) chain that serves as a degradation signal. However, some targets, such as oxidized proteins, do not require a poly-Ub tag for proteasomal degradation, and recent studies have shown that the main protease in this Ub-independent pathway is free 20SP. It is currently unknown how the ratio of 26SP- to 20SP-dependent proteolysis is controlled. Here we show that loss of function of the Arabidopsis RP subunits RPT2a, RPN10 and RPN12a leads to decreased 26SP accumulation, resulting in reduced rates of Ub-dependent proteolysis. In contrast, all three RP mutants have increased 20SP levels and thus enhanced Ub-independent protein degradation. As a consequence of this shift in proteolytic activity, mutant seedlings are hypersensitive to stresses that cause protein misfolding, and have increased tolerance to treatments that promote protein oxidation. Taken together, the data show that plant cells increase 20SP-dependent proteolysis when 26SP activity is impaired.  相似文献   

12.
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.  相似文献   

13.
26S proteasome is a multisubunit protein complex that consists of 19S regulatory and 20S catalytic subcomplexes. The primary proteasome cellular function is protein degradation. It has recently been found that, in addition to its proteolytic activities, the 20S particle also displays endoribonuclease activity mediated by two alpha-type subunits, α1 and α5. In this report, we have analyzed other alpha-type subunits for their ability to hydrolyze RNA. We have found that all of the recombinant subunits tested (α1, α2, α3, α4, α5, α7) exhibited endoribonuclease activity that depends on the origin of RNA and the presence of bivalent ions in the reaction. These results indicate that the endoribonuclease activity of proteasomes may play an important role in cellular RNA metabolism.  相似文献   

14.
Regulatory subunit interactions of the 26S proteasome, a complex problem   总被引:16,自引:0,他引:16  
The 26S proteasome is the major non-lysosomal protease in eukaryotic cells. This multimeric enzyme is the integral component of the ubiquitin-mediated substrate degradation pathway. It consists of two subcomplexes, the 20S proteasome, which forms the proteolytic core, and the 19S regulator (or PA700), which confers ATP dependency and ubiquitinated substrate specificity on the enzyme. Recent biochemical and genetic studies have revealed many of the interactions between the 17 regulatory subunits, yielding an approximation of the 19S complex topology. Inspection of interactions of regulatory subunits with non-subunit proteins reveals patterns that suggest these interactions play a role in 26S proteasome regulation and localization.  相似文献   

15.
The 26S proteasome is a multi‐catalytic ATP‐dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits. To elucidate the structure‐function relationship, we have dissected protein‐protein interfaces of 20S core particle and analyzed structural and physiochemical properties of intra‐alpha, intra‐beta, inter‐beta, and alpha‐beta interfaces. Furthermore, we have studied the evolutionary conservation of 20S core particle. We find the size of intra‐alpha interfaces is significantly larger and is more hydrophobic compared with other interfaces. Inter‐beta interfaces are well packed, more polar, and have higher salt‐bridge density than other interfaces. In proteasome assembly, residues in beta subunits are better conserved than alpha subunits, while multi‐interface residues are the most conserved. Among all the residues at the interfaces of both alpha and beta subunits, Gly is highly conserved. The largest size of intra‐alpha interfaces complies with the hypothesis that large interfaces form first during the 20S assembly. The tight packing of inter‐beta interfaces makes the core particle impenetrable from outer wall of the cylinder. Comparing the three domains, eukaryotes have large and well‐packed interfaces followed by archaea and bacteria. Our findings provide a structural basis of assembly of 20S core particle in all the three domains of life.  相似文献   

16.
Rpn10 is a ubiquitin receptor of the 26S proteasome, and plays an important role in poly-ubiquitinated proteins recognition in the ubiquitin–proteasome protein degradation pathway. It is located in the 19S regulatory particle and interacts with several subunits of both lid and base complexes. Bioinformatics analysis of yeast Rpn10 suggests that it contains a von Willebrand (VWA domain) and a C-terminal tail containing a Ub-interacting motif. Studies of Saccharomyces cerevisiae Rpn10 suggested that its VWA domain might participate in interactions with subunit from both lid and base subcomplexes of the 19S regulatory particle. Herein, we report the chemical shift assignments of 1H, 13C and 15N atoms of the VWA domain of S. cerevisiae Rpn10, which provide the basis for further structural and functional studies of Rpn10 by solution NMR technique.  相似文献   

17.
The 26S proteasome is an essential molecular machine for specific protein degradation in eukaryotic cells. The 26S proteasome is formed by a central 20S core particle capped by two 19S regulatory particle (RP) at both ends. The Rpn9 protein is a non-ATPase subunit located in the lid complex of the 19S RP, and is identified to be essential for efficient assembly of yeast 26S proteasome. Bioinformatics analysis of Saccharomyces cerevisiae Rpn9 suggested it contains a PCI domain at the C-terminal region. However, high-resolution structures of either the PCI domain or the full-length Rpn9 still remain elusive. Herein, we report the chemical shift assignments of 1H, 13C and 15N atoms of the individual N- and C-domains, as well as full-length S. cerevisiae Rpn9, which provide the basis for further structural and functional studies of Rpn9 using solution NMR technique.  相似文献   

18.
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation.  相似文献   

19.
Protein degradation by 20S proteasomes in vivo requires ATP hydrolysis by associated hexameric AAA ATPase complexes such as PAN in archaea and the homologous ATPases in the eukaryotic 26S proteasome. This review discusses recent insights into their multistep mechanisms and the roles of ATP. We have focused on the PAN complex, which offers many advantages for mechanistic and structural studies over the more complex 26S proteasome. By single-particle EM, PAN resembles a "top-hat" capping the ends of the 20S proteasome and resembles densities in the base of the 19S regulatory complex. The binding of ATP promotes formation of the PAN-20S complex, which induces opening of a gate for substrate entry into the 20S. PAN's C-termini, containing a conserved motif, docks into pockets in the 20S's alpha ring and causes gate opening. Surprisingly, once substrates are unfolded, their translocation into the 20S requires ATP-binding but not hydrolysis and can occur by facilitated diffusion through the ATPase in its ATP-bound form. ATP therefore serves multiple functions in proteolysis and the only step that absolutely requires ATP hydrolysis is the unfolding of globular proteins. The 26S proteasome appears to function by similar mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号