首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock proteins (HSPs) are important molecules in the stress response of organisms from prokaryotes to mammals, and thus may be useful biomarkers for environmental stress. Here we characterize the functional roles of genes belonging to four distinct families of HSPs (hsp40, hsp60, hsp70, and hsp90) in the monogonont rotifer Brachionus manjavacas. Because B. manjavacas inhabits ponds of varying thermal regimes, including ephemeral ponds that may experience temperature fluctuations, HSP-mediated thermotolerance likely is important to its survival and adaptation. Using interference RNA (RNAi), we provide the first conclusive evidence that HSPs are required for rotifer survival following heat stress. Effective RNAi-mediated suppression of all hsp genes except hsp90 was verified via quantitative PCR. Hsp40, hsp60, and hsp70 are required for rotifer thermotolerance (P < 0.05); however, our data do not indicate hsp90 is essential. Quantitative PCR further revealed immediate up-regulation of hsp40 mRNA following heat stress. Additionally, we demonstrated expression of hsp40 mRNA in multiple tissues using fluorescent in situ hybridization. Our characterization of mRNA expression and functional roles for four distinct hsp genes provides a baseline for molecular-level comparisons of the stress response of rotifers with other taxonomic groups, and the technique for in-depth studies of the role of specific genes in rotifer stress responses. Considering the potential for ambient temperatures to impact species survival, competitive interactions, and body size of individuals, thermotolerance may be an important influence on zooplankton community structure.  相似文献   

2.
3.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

4.
Heat stress is a major factor limiting the growth of cool-season grasses in warm climatic regions by affecting many physiological processes, including protein metabolism. Protein degradation often occurs with increasing temperatures, but certain specific proteins such as heat shock proteins (HSPs) may be induced or enhanced in their expression under supraoptimal temperatures. The objectives of this study were to determine the critical temperature that causes protein induction or degradation in two Agrostis grass species differing in heat tolerance and to compare protein profiles between the two species under different temperature regimes. Plants of heat-tolerant Agrostis scabra and two cultivars of heat-sensitive Agrostis stolonifera (‘L-93’ and ‘Penncross’) were exposed to constant day/night temperatures of 20, 30, 35, 40, or 45 °C for 14 d. Leaf photochemical efficiency (Fv/Fm), chlorophyll and carotenoid contents, and soluble protein content declined with increasing temperatures. The decreases were the least severe for A. scabra, intermediate for ‘L-93’, and the most severe for ‘Penncross’, indicating interspecific and intraspecific variations in heat tolerance in Agrostis species. Protein degradation was observed at 30–45 °C in both cultivars of A. stolonifera, and at 40–45 °C in A. scabra.HSPs were induced or enhanced at 35–45 °C in ‘L-93’ and A. scabra, and at 40–45 °C in ‘Penncross’. Immunoblotting also revealed stronger expressions of HSP60 and HSP70 in A. scabra or ‘L-93’ than in ‘Penncross’ at 35–45 °C after 3 d. The results suggested the superior heat tolerance of Agrostis grass species and cultivars could be attributed to the early induction of HSPs, particularly small molecular weight (23 kDa), at a lower level of heat stress and the maintenance of protein thermostability, particularly high-molecular weight proteins (83 kDa and large units of Rubisco).  相似文献   

5.
The survival and viability of sea turtle embryos is dependent upon favourable nest temperatures throughout the incubation period. Consequently, future generations of sea turtles may be at risk from increasing nest temperatures due to climate change, but little is known about how embryos respond to heat stress. Heat shock genes are likely to be important in this process because they code for proteins that prevent cellular damage in response to environmental stressors. This study provides the first evidence of an expression response in the heat shock genes of embryos of loggerhead sea turtles (Caretta caretta) exposed to realistic and near-lethal temperatures (34 °C and 36 °C) for 1 or 3 hours. We investigated changes in Heat shock protein 60 (Hsp60), Hsp70, and Hsp90 mRNA in heart (n=24) and brain tissue (n=29) in response to heat stress. Under the most extreme treatment (36 °C, 3 h), Hsp70 increased mRNA expression by a factor of 38.8 in heart tissue and 15.7 in brain tissue, while Hsp90 mRNA expression increased by a factor of 98.3 in heart tissue and 14.7 in brain tissue. Hence, both Hsp70 and Hsp90 are useful biomarkers for assessing heat stress in the late-stage embryos of sea turtles. The method we developed can be used as a platform for future studies on variation in the thermotolerance response from the clutch to population scale, and can help us anticipate the resilience of reptile embryos to extreme heating events.  相似文献   

6.
Both phospholipase D (PLD, EC 3.1.4.4) and salicylic acid (SA) play important roles in response to external stimulation and activating defense system in plants. However, roles of the two signals in plants during the development of thermotolerance induced by low temperature acclimation remain unclear. In the experiment presented in the paper, grape berries (Vitis vinifera L. cv. Chardonnay) were pretreated at 8 °C for 3 h and then transferred to 45 °C for heat stress. Compared with the control without low temperature pretreatment, membrane permeability and malondialdehyde (MDA) contents were reduced and the expression of HSP73 increased in the low temperature-pretreated berries under heat stress. During low temperature acclimation, PLD, SA and HSP73 could be activated. Meanwhile, the expression of HSP73 and the accumulation of free SA induced by low temperature can be inhibited by PLD activity inhibitor. All these results suggest that the activation of PLD is an early response to low temperature, and it is involved in the accumulation of free SA and the development of thermotolerance induced by low temperature acclimation.  相似文献   

7.
8.
9.
10.
Plants typically respond to environmental stresses by inducing antioxidants as a defense mechanism. As a number of these are also phytochemicals with health-promoting qualities in the human diet, we have used mild environmental stresses to enhance the phytochemical content of lettuce, a common leafy vegetable. Five-week-old lettuce (Lactuca sativa L.) plants grown in growth chambers were exposed to mild stresses such as heat shock (40 °C for 10 min), chilling (4 °C for 1 d) or high light intensity (800 μmol m?2 s?1 for 1 d). In response to these stresses, there was a two to threefold increase in the total phenolic content and a significant increase in the antioxidant capacity. The concentrations of two major phenolic compounds in lettuce, chicoric acid and chlorogenic acid, increased significantly in response to all the stresses. Quercetin-3-O-glucoside and luteolin-7-O-glucoside were not detected in the control plants, but showed marked accumulations following the stress treatments. The results suggest that certain phenolic compounds can be induced in lettuce by environmental stresses. Of all the stress treatments, high light produced the greatest accumulation of phenolic compounds, especially following the stress treatments during the recovery. In addition, key genes such as phenylalanine ammonia-lyase (PAL), l-galactose dehydrogenase (l-GalDH), and γ-tocopherol methyltransferase (γ-TMT) involved in the biosynthesis of phenolic compounds, ascorbic acid, and α-tocopherol, respectively, were rapidly activated by chilling stress while heat shock and high light did not appear to have an effect on the expression of PAL and γ-TMT. However, l-GalDH was consistently activated in response to all the stresses. The results also show that these mild environmental stresses had no adverse effects on the overall growth of lettuce, suggesting that it is possible to use mild environmental stresses to successfully improve the phytochemical content and hence the health-promoting quality of lettuce with little or no adverse effect on its growth or yield.  相似文献   

11.
Lake whitefish (Coregonus clupeaformis) embryos were exposed to thermal stress (TS) at different developmental stages to determine when the heat shock response (HSR) can be initiated and if it is altered by exposure to repeated TS. First, embryos were subject to one of three different TS temperatures (6, 9, or 12 °C above control) at 4 points in development (21, 38, 60 and 70 days post-fertilisation (dpf)) for 2 h followed by a 2 h recovery to understand the ontogeny of the HSR. A second experiment explored the effects of repeated TS on the HSR in embryos from 15 to 75 dpf. Embryos were subjected to one of two TS regimes; +6 °C TS for 1 h every 6 days or +9 °C TS for 1 h every 6 days. Following a 2 h recovery, a subset of embryos was sampled. Our results show that embryos could initiate a HSR via upregulation of heat shock protein 70 (hsp70) mRNA at all developmental ages studied, but that this response varied with age and was only observed with a TS of +9 or +12 °C. In comparison, when embryos received multiple TS treatments, hsp70 was not induced in response to the 1 h TS and 2 h recovery, and a downregulation was observed at 39 dpf. Downregulation of hsp47 and hsp90α mRNA was also observed in early age embryos. Collectively, these data suggest that embryos are capable of initiating a HSR at early age and throughout embryogenesis, but that repeated TS can alter the HSR, and may result in either reduced responsiveness or a downregulation of inducible hsps. Our findings warrant further investigation into both the short- and long-term effects of repeated TS on lake whitefish development.  相似文献   

12.
The objective of this study was to compare the thermotolerances of ear fibroblasts derived from Holstein (H) and Taiwan yellow cattle (Y) and their apoptosis-related protein expressions with (1, 3, 6, 12, and 24 h) or without heat shock treatment. The results showed that the vaginal temperatures of Y (38.4–38.5 °C) were (P<0.05) lower than that of H (38.8 °C) during the hot season. The apoptotic rates of ear fibroblasts derived from Y (6 h: 1.1%; 12 h: 1.6%; 24 h: 2.6%) were lower (P<0.05) than those of cells derived from H (6 h: 1.8%; 12 h: 4.0%; 24 h: 6.9%), respectively, after heat shock (42 °C). The expression level of apoptosis inducing factor (AIF) in ear fibroblasts derived from H was higher (P<0.05) than those derived from Y after the heat shock treatment for 6 h and 12 h, respectively. The level of cytochrome c of ear fibroblasts derived from H was higher (P<0.05) than those derived from Y after the heat shock treatment for 1–12 h, respectively. The abundances of Caspase-3, Caspase-8 and Caspase-9 of ear fibroblasts derived from H were higher (P<0.05) than those of cells derived from Y after 12 h and 24 h of heat shock, respectively; the Bcl-2/Bax ratios of ear fibroblasts derived from H were lower (P<0.05) than those from Y-derived fibroblasts after heated for 1–24 h. The expression level of HSP-70 of Y-derived ear fibroblasts was also higher (P<0.05) than that from H after the same duration of heat shock treatments. Taken together, the thermotolerance of ear fibroblasts derived from Taiwan yellow cattle was better than that of cells derived from Holstein cattle.  相似文献   

13.
The present studies were conducted to investigate the difference response of dermal fibroblasts to heat stress in Tharparkar and Karan-Fries cattle. Skin is the most important environmental interface providing a protective envelope to animals. In skin, dermal fibroblasts are the most regular cell constituent of dermis that is crucial for temperature homeostasis. The study aimed to examine the reactive oxygen species (ROS) formation, cytotoxicity (%) and heat shock protein 70 (HSP70) genes expression in dermal fibroblast of Tharparkar and Karan-Fries cattle and to assess whether resistance of dermal fibroblast to heat stress is breed specific. Dermal fibroblasts from ear pinna of Tharparkar and Karan-Fries cattle were exposed at 25 °C, 37 °C, 40 °C and 44 °C for 3 h to measure the ROS, cytotoxicity (%) and HSP 70 (HSPA1A, HSPA2 and HSPA8) genes’ expression. The results showed that ROS formation at low temperature (25 °C) decreased in both breeds as compared to control (37 °C) and the differences were significant (P<0.0001). Heat stress at 40 °C did not increase ROS formation significantly in Tharparkar but increased significantly (P<0.001) in Karan-Fries cattle. The overall cytotoxicity (%) was also found to be significantly different (P<0.001) between Tharparkar and Karan-Fries cattle, and on exposure to different temperatures (P<0.001). The cytotoxicity (%) in dermal fibroblast cells of Karan-fries cows was more than Tharparkar. The expression studies indicated that all HSP70 genes (HSPA8, HSPA1A and HSPA2) were up-regulated at different temperatures in both breeds. In Tharparkar, the relative mRNA expression of HSPA8 gene was higher but HSPA1A and HSPA2 genes were low as compared to Karan-Fries cattle. At 40 and 44 °C, the relative expressions of inducible HSP 70 genes (HSPA1A and HSPA2) were higher in Karan-Fries than Tharparkar. In summary, dermal fibroblast resistance to heat shock differed between breeds. Dermal fibroblasts of Tharparkar were observed to be more heat tolerant than crossbred Karan-Fries cattle. The study concludes that zebu cattle (Tharparkar) dermal fibroblasts are more adapted to tropical climatic condition than crossbreed cattle (Karan-Fries). Differences exist in dermal fibroblasts of heat adapted and non-adapted cattle.  相似文献   

14.
《Theriogenology》2007,67(9):2195-2201
The damaging effects of heat stress on male fertility are evident in developing spermatozoa expressed in ejaculates 18–28 days post-stress in mice. Our objectives were to: (1) assess genetic variation in fertility of heat-stressed male mice and (2) determine response to selection for fertility after heat stress in male mice. Mature male mice were exposed to heat stress (35 ± 1 °C; n = 50) or control (21 ± 1 °C; n = 10) conditions for 24 h (day 0) and then hemicastrated for tissue collection. Two periods of mating tests followed, period 1 (from days 3 to 11) when no reductions in fertility were anticipated, and period 2 (days 18–26) when variation in fertility was expected. Period 2 pregnant females were sacrificed in late gestation. Males were indexed by multiplying overall mean ovulation rate by pre-implantation survival and number of pregnant period 2 mates. The five highest and five lowest ranking males were identified as heat stress resistant and susceptible, respectively. Resistant males were 61.2 units superior in the index, 57.5% greater in pregnancy rate, and 57.6 total fetuses greater than susceptible males. Progeny of resistant sires were superior to progeny of susceptible sires in estimated breeding value by 4.5 units for the index, 4.1% for pregnancy rate, and 5.2 fetuses (P < 0.0001). Heritability estimates for the index, pregnancy rate, and number of fetuses ranged from 0.09 to 0.13, suggesting male fertility following heat stress is heritable and responds to selection.  相似文献   

15.
Plant tolerance to high soil temperature may be related to the adjustment in carbon production and utilization. The objective of this study was to determine changes in whole-plant carbon balance and root respiration rate in relation to root tolerance to high soil temperature for two Agrostis grass species varying in heat tolerance. Plant tolerance to high soil temperature was compared between Agrostis scabra, a thermal grass species adapted to chronic high-temperature soils in the geothermal areas in Yellowstone National Park, and creeping bentgrass (Agrostis stolonifera), a cultivated grass species adapted to cool climatic regions. Plant roots were exposed to low soil temperature (20 °C) or high soil temperature (37 °C) for 17 days in water baths placed in a controlled-environment growth chamber. Root biomass and cell membrane stability were determined to evaluate root thermotolerance of both species. Canopy photosynthetic rate (Pn), whole-plant respiration rate, root respiration rate, and total non-structural carbohydrate (TNC) content were measured to assess changes in carbon production and utilization in response to high soil temperature. Root biomass and cell membrane stability declined with increasing soil temperature, but the decline was much less for A. scabra than A. stolonifera, suggesting that roots of A. scabra were more tolerant to heat stress. Canopy Pn decreased and whole-plant respiration rate increased for A. stolonifera, but canopy Pn and respiration rate were unchanged for A. scabra in response to increasing soil temperature. After 17 days of high soil temperature treatment, A. stolonifera exhibited carbon deficit at the whole-plant level, whereas A. scabra maintained positive carbon gain. Root respiration of plants previously grown at 20 °C increased after a short-term treatment (24 h) at 37 °C, but the increase was significantly lower for A. scabra than for A. stolonifera. TNC content in roots did not show response to short-term (24 h) changes in temperature and did not exhibit species variations. Leaves of A. scabra, however, maintained TNC content under both low and high temperature regimes. Our results suggest that root thermotolerance of cool-season grasses could be related to the maintenance of positive whole-plant carbon balance, and down-regulation of whole-plant and root respiration rates in response to increasing soil temperature.  相似文献   

16.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

17.
18.
19.
Biochemical reactions to Cu, Cd, Zn and Pb in the aquatic moss Fontinalis antipyretica were studied in order to characterize the physiological background of the metal response. Chlorophyll fluorescence and intracellular metal localization and stress protein levels were measured. Exposure to 25 or 100 μM Cu over a 7-day period resulted in a decline of chlorophyll fluorescence to about 70% and 52%, respectively. Up to 100 μM Cd caused a decrease in chlorophyll fluorescence to 75%. With all metals used at 25–100 μM concentrations, the intracellular uptake increased. For all metals investigated at 25–100 μM, the intracellular uptake increased. Maximum values were reached at 100 μM Cu, Pb, Zn or Cd exposure. As shown by analytical electron microscopy (EDX, EELS) moss material treated with 50 μM Cu exhibited reduced sulphur levels in the cytoplasm and an increase in phosphate in vacuolar dense particles. EEL-spectra indicated that Cu is chelated in the cytoplasm by SH-groups and coprecipitated with orthophosphate in vacuoles. To monitor the stress response at the protein level, heavy metal induced heat shock protein 70 (hsp70) was measured. An antibody was raised against conserved plant metallothionein p2 motifs derived from Brassica juncea. In all metal-treated samples the antibody bound to proteins of about 8 kDa. However, sequencing failed to reveal significant homologies to known proteins. These experiments provide for the first time results on protein level after heavy metal stress in the aquatic bioindicator moss.  相似文献   

20.
Exposure of microbial cells to sub-lethal stresses is known to increase cell robustness. In this work, a two-compartment bioreactor in which microbial cells are stochastically exposed to sub-lethal temperature stresses has been used in order to investigate the response of the stress sensitive Bifidobacterium bifidum THT 0101 to downstream processing operations. A stochastic model validated by residence time distribution experiments has shown that in the heat-shock configuration, a two-compartment bioreactor (TCB) allows the exposure of microbial cells to sub-lethal temperature of 42 °C for a duration comprised between 100 and 300 s. This exposure resulted in a significant increase of cell resistance to freeze–drying by comparison with cells cultivated in conventional bioreactors or in the TCB in the cold shock mode (CS-TCB). The mechanism behind this robustness seems to be related with the coating of microbial cells with exopolysaccharide (EPS), as assessed by the change of the zeta potential and the presence of higher EPS concentration after heat shock. Conditioning of Bifidobacteria on the basis of the heat shock technique is interesting from the practical and economical point of view since this strategy can be directly implemented in the bioreactor during stationary phase preceding cell recovery and freeze–drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号