首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Mesenchymal stem-like cells identified in different tissues reside in a perivascular niche. In the present study, we investigated the putative niche of adipose-derived stromal/stem cells (ASCs) using markers, associated with mesenchymal and perivascular cells, including STRO-1, CD146, and 3G5. Immunofluorescence staining of human adipose tissue sections, revealed that STRO-1 and 3G5 co-localized with CD146 to the perivascular regions of blood vessels. FACS was used to determine the capacity of the CD146, 3G5, and STRO-1 specific monoclonal antibodies to isolate clonogenic ASCs from disassociated human adipose tissue. Clonogenic fibroblastic colonies (CFU-F) were found to be enriched in those cell fractions selected with either STRO-1, CD146, or 3G5. Flow cytometric analysis revealed that cultured ASCs exhibited similar phenotypic profiles in relation to their expression of cell surface markers associated with stromal cells (CD44, CD90, CD105, CD106, CD146, CD166, STRO-1, alkaline phosphatase), endothelial cells (CD31, CD105, CD106, CD146, CD166), haematopoietic cells (CD14, CD31, CD45), and perivascular cells (3G5, STRO-1, CD146). The immunoselected ASCs populations maintained their characteristic multipotential properties as shown by their capacity to form Alizarin Red positive mineralized deposits, Oil Red O positive lipid droplets, and Alcian Blue positive proteoglycan-rich matrix in vitro. Furthermore, ASCs cultures established from either STRO-1, 3G5, or CD146 selected cell populations, were all capable of forming ectopic bone when transplanted subcutaneously into NOD/SCID mice. The findings presented here, describe a multipotential stem cell population within adult human adipose tissue, which appear to be intimately associated with perivascular cells surrounding the blood vessels.  相似文献   

2.
3.
Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed “bone regeneration”. Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the “positive” marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.  相似文献   

4.
5.
Background information. Although MSCs (mesenchymal stem cells) and fibroblasts have been well studied, differences between these two cell types are not fully understood. We therefore comparatively analysed antigen and gene profiles, colony‐forming ability and differentiation potential of four human cell types in vitro: commercially available skin‐derived fibroblasts [hSDFs (human skin‐derived fibroblasts)], adipose tissue‐derived stem cells [hASCs (human adipose tissue‐derived stem cells)], embryonic lung fibroblasts (WI38) and dermal microvascular endothelial cells [hECs (human dermal microvascular endothelial cells)]. Results. hSDFs, hASCs and WI38 exhibited a similar spindle‐like morphology and expressed same antigen profiles: positive for MSC markers (CD44, CD73 and CD105) and fibroblastic markers [collagen I, HSP47 (heat shock protein 47), vimentin, FSP (fibroblast surface protein) and αSMA (α smooth muscle actin)], and negative for endothelial cell marker CD31 and haemopoietic lineage markers (CD14 and CD45). We further analysed 90 stem cell‐associated gene expressions by performing real‐time PCR and found a more similar gene expression pattern between hASCs and hSDFs than between hSDFs and WI38. The expression of embryonic stem cell markers [OCT4, KLF4, NANOG, LIN28, FGF4 (fibroblast growth factor 4) and REST] in hASCs and hSDFs was observed to differ more than 2.5‐fold as compared with WI38. In addition, hSDFs and hASCs were able to form colonies and differentiate into adipocytes, osteoblasts and chondrocytes in vitro, but not WI38. Moreover, single cell‐derived hSDFs and hASCs obtained by clonal expansion were able to differentiate into adipocytes and osteoblasts. However, CD31 positive hECs did not show differentiation potential. Conclusions. These findings suggest that (i) so‐called commercially available fibroblast preparations from skin (hSDFs) consist of a significant number of cells with differentiation potential apart from terminally differentiated fibroblasts; (ii) colony‐forming capacity and differentiation potential are specific important properties that discriminate MSCs from fibroblasts (WI38), while conventional stem cell properties such as plastic adherence and the expression of CD44, CD90 and CD105 are unspecific for stem cells.  相似文献   

6.
The applicability of stem cells from the human endometrium and fallopian tube for regeneration is a fascinating area of research because of the role of these cells in dynamic tissue remodelling and their cyclical regenerative property during the menstrual cycle and pregnancy. Nevertheless, studies on the identity of biomarkers of these stem cells are limited and need to be extended. The present study has aimed at exploring the tissue-specific biomarkers of stem cells derived from the human endometrium and fallopian tube compared with those from bone marrow. Cells were isolated from human endometrium and fallopian tubes and characterized for biomarkers, including CD34, CD133, CD117, CD90, CD105, CD73, nestin, CD29, CD44, CD31, CD54, CD166, CD106, CD49d, CD45, ABCG2, SSEA4, OCT4, SOX2, CD140b and CD146, by flowcytometry. Both endometrium and fallopian tube sources exhibited positivity over a wide range of markers, as did bone marrow. In particular, they exhibited pluripotency, perivascular and mesenchymal stem cell markers and cell adhesion molecules, thereby suggesting their relevance in tissue repair and regeneration. Overall, the results of this study provide evidence for the presence of stem cells in the human endometrium and fallopian tube, which could thus represent additional stem cell sources for regenerative medicine.  相似文献   

7.
8.
Liposuction aspirates (primarily saline solution, blood, and adipose tissue fragments) separate into fatty and fluid portions. Cells isolated from the fatty portion are termed processed lipoaspirate (PLA) cells and contain adipose-derived adherent stromal cells (ASCs). Here we define cells isolated from the fluid portion of liposuction aspirates as liposuction aspirate fluid (LAF) cells. Stromal vascular fractions (SVF) were isolated separately from both portions and characterized under cultured and non-cultured conditions. A comparable number of LAF and PLA cells were freshly isolated, but fewer LAF cells were adherent. CD34+ CD45- cells from fresh LAF isolates were expanded by adherent culture, suggesting that LAF cells contain ASCs. Although freshly isolated PLA and LAF cells have distinct cell surface marker profiles, adherent PLA and LAF cells have quite similar characteristics with regard to growth kinetics, morphology, capacity for differentiation, and surface marker profiles. After plating, both PLA and LAF cells showed significant increased expression of CD29, CD44, CD49d, CD73, CD90, CD105, and CD151 and decreased expression of CD31 and CD45. Multicolor FACS analysis revealed that SVF are composed of heterogeneous cell populations including blood-derived cells (CD45+), ASCs (CD31- CD34+ CD45- CD90+ CD105- CD146-), endothelial (progenitor) cells (CD31+ CD34+ CD45- CD90+ CD105low CD146+), pericytes (CD31- CD34- CD45- CD90+ CD105- CD146+), and other cells. After plating, ASCs showed a dramatic increase in CD105 expression. Although some adherent ASCs lost CD34 expression with increasing culture time, our culture method maintained CD34 expression in ASCs for at least 10-20 weeks. These results suggest that liposuction-derived cells may be useful and valuable for cell-based therapies.  相似文献   

9.

Background

A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC), lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations - beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC) have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE) as a novel strategy to successfully address this question.

Results

UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells.

Conclusion

Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the high proliferative capacity of these MSC-like cells as compared to whole primary culture or other UC-derived subpopulations. The accumulation of a self-renewing MSC-like subpopulation by CCE with low expression levels of the aging marker senescence-associated β-galactosidase provides a valuable tool in the regenerative medicine and an alternative to bone-marrow-derived MSC.  相似文献   

10.
Placenta has attracted increasing attention over the past decade as a stem cell source for regenerative medicine. In particular, the amniochorionic membrane has been shown to harbor populations of mesenchymal stromal cells (MSCs). In this study, we have characterized ex vivo expanded MSCs from the human amniotic (hAMSCs) and chorionic (hCMSCs) membranes of human full-term placentas and adult bone marrow (hBMSCs). Our results show that hAMSCs, hCMSCs, and hBMSCs express typical mesenchymal (CD73, CD90, CD105, CD44, CD146, CD166) and pluripotent (Oct-4, Sox2, Nanog, Lin28, and Klf4) markers but not hematopoietic markers (CD45, CD34). Ex vivo expanded hAMSCs were found to be of fetal origin, while hCMSCs cultures contained only maternal cells. Cell proliferation was significantly higher in hCMSCs, compared to hAMSCs and hBMSCs. Integrin profiling revealed marked differences in the expression of α subunits between the three cell sources. Cadherin receptors were consistently expressed on a subset of progenitors (ranging from 1% to 60%), while N-CAM (CD56) was only expressed in hAMSCs and hCMSCs but not in hBMSCs. When induced to differentiate, hAMSCs and hCMSCs displayed strong chondrogenic and osteogenic differentiation potential but very limited capacity for adipogenic conversion. In contrast, hBMSCs showed strong differentiation potential along the three lineages. These results illustrate how MSCs from different ontological sources display differential expression of cell-fate mediators and mesodermal differentiation capacity.  相似文献   

11.
The therapeutic rationale for tissue repair and regeneration using stem cells is at its infancy and needs advancement in understanding the role of individual component’s innate capability. As stem cells of adipose tissue reside in a more heterogeneous population of stromal vascular fractions, cell separation or sorting becomes an eminent step towards revealing their unique properties. This study elucidates the comparative efficacy of lineage depleted adipose derived stromal vascular fraction (SVF) and their innate ability using magnetic activated cell sorter (MACS). To this end, isolated SVF from human adipose tissue was lineage depleted according to the manufacturer’s instructions using specific antibody cocktail through MACS. The enriched lineage negative (lin−) and lineage positive (lin+) cell fractions were cultured, phenotypically characterized for the panel of cell surface markers using flowcytometry and subjected to osteoblastic and adipogenic differentiation. The expression profile obtained for lin− cells was CD34−/CD45−/HLADR−/CD49d−/CD140b−/CD31−/CD90+/CD105+/CD73+/CD54+/CD166+/CD117− when compared to Lin+ cells expressing CD34+/CD45+/HLADR−/CD49d−/CD140b+/CD31−/CD90+/CD105+/CD73+/CD54+/CD166+/CD117+ (CD—cluster of differentiation). These results, thus, advances our understanding on the inherent property of the individual cell population. Furthermore, both the fractions exhibited mesodermal lineage differentiation capacity. To conclude, this research pursuit rationalized the regenerative therapeutic applicability of both lin− and lin+ cultures of human adipose tissue for disorders of mesodermal, haematological and vascular origin.  相似文献   

12.
目的:检测多能成体祖细胞(MAPC)的培养条件对猴骨髓间充质细胞(BMMSCs)和人脂肪干细胞(hADSCs)生长的影响,旨在获得更适合治疗视网膜变性疾病的供体细胞。方法通过细胞形态观察、MTT实验、克隆形成率、PCR检测、以及成脂、成骨、成软骨分化潜能检测等,研究MAPC培养条件下猴BMMSCs和hADSCs的特征,并用DMEM/LG和MAPC培养条件培养的hADSCs进行RCS大鼠视网膜下腔移植,通过视网膜电图(ERG)和TUNEL检测,判断细胞移植治疗对视功能及视网膜细胞凋亡的影响。结果与常规培养基相比,MAPC培养条件能促进猴BMMSCs增殖,细胞变小,但传2代后,细胞变得宽大扁平,出现衰老征象;然而,MAPC培养条件下的hADSCs细胞增殖能力及克隆形成率均增强,形成的克隆较大可稳定传10代以上,且具有成脂、成骨、成软骨的多向分化潜能,细胞表面标记物及细胞因子出现差异表达:CD140b、CD90、CD47、HGF和PEDF显著上调,CD73、CD105和IL-6显著下调。与对照组相比,移植DMEM/LG和MAPC培养条件培养的hADSCs(P4)3周后,RCS大鼠的B波波幅明显升高,外核层细胞凋亡明显减少。结论 MAPC培养条件培养的hADSCs显示出更好的视网膜神经保护作用,适合用于治疗视网膜退行性疾病。  相似文献   

13.
Gingival fibroblasts (GFs) that exhibit adult stem cell-like characteristics are known as gingival mesenchymal stem cells (GMSCs). Specific mesenchymal stem cell (MSC) markers have not been identified to distinguish GMSCs from GFs. Recently, the cell surface molecule known as cluster of differentiation (CD) 146 has been identified as a potential MSC surface marker. In the present study, we investigated the differentiation potential of GMSCs based on CD146 expression.GFs were isolated by two techniques: tissue explants or enzymatic digestion. GFs were cultured and expanded then magnetically sorted according to CD146 expression. CD146low and CD146high cells were collected, expanded, and then tested for stem cell markers by flow cytometry as well as osteogenic and chondrogenic differentiation potential. The differentiation of these cells was analyzed after 21 days using histology, immunofluorescence, real-time quantitative PCR (qPCR), and glycosaminoglycan (GAG) to DNA ratio (GAG/DNA) assays. Positive histological staining indicated osteogenic differentiation of all groups regardless of the isolation techniques utilized. However, none of the groups demonstrated chondrogenic differentiation, confirmed by the lack of collagen type II in the extracellular matrix (ECM) of GF aggregates. Our data suggest that identification of gingival stem cells based solely on CD146 is not sufficient to properly carry out translational research using gingival fibroblasts for novel therapeutic methods of treating oral disease.  相似文献   

14.
15.
The discovery of adipose-derived stromal cells (ASCs) has created many opportunities for the development of patient-specific cell-based replacement therapies. We have isolated multiple cell strains of ASCs from various anatomical sites (abdomen, arms/legs, breast, buttocks), indicating widespread distribution of ASCs throughout the body. Unfortunately, there exists a general lack of agreement in the literature as to their "stem cell" characteristics. We find that telomerase activity and expression of its catalytic subunit in ASCs are both below the levels of detection, independent of age and culturing conditions. ASCs also undergo telomere attrition and eventually senesce, while maintaining a stable karyotype without the development of spontaneous tumor-associated abnormalities. Using a set of cell surface markers that have been promoted to identify ASCs, we find that they failed to distinguish ASCs from normal fibroblasts, as both are positive for CD29, CD73 and CD105 and negative for CD14, CD31 and CD45. All of the ASC isolates are multipotent, capable of differentiating into osteocytes, chondrocytes and adipocytes, while fibroblasts show no differentiation potential. Our ASC strains also show elevated expression of genes associated with pluripotent cells, Oct-4, SOX2 and NANOG, when compared to fibroblasts and bone marrow-derived mesenchymal stem cells (BM-MSCs), although the levels were lower than induced pluripotent stem cells (iPS). Together, our data suggest that, while the cell surface profile of ASCs does not distinguish them from normal fibroblasts, their differentiation capacity and the expression of genes closely linked to pluripotency clearly define ASCs as multipotent stem cells, regardless of tissue isolation location.  相似文献   

16.
Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56+ cells grew rapidly, a population of CD15+ cells emerged, partly from CD56+ cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56+ and CD15+ cells shared osteogenic and chondrogenic abilities, while CD56+ cells presented a myogenic capacity and CD15+ cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.  相似文献   

17.
Ko IK  Ju YM  Chen T  Atala A  Yoo JJ  Lee SJ 《FASEB journal》2012,26(1):158-168
Whereas the conventional tissue engineering strategy involves the use of scaffolds combined with appropriate cell types to restore normal functions, the concept of in situ tissue regeneration uses host responses to a target-specific scaffold to mobilize host cells to a site of injury without the need for cell seeding. For this purpose, local delivery of bioactive molecules from scaffolds has been generally used. However, this approach has limited stem cell recruitment into the implants. Thus, we developed a combination of systemic delivery of substance P (SP) and local release of stromal-derived factor-1α (SDF-1α) from an implant. In this study, we examined whether this combined system would significantly enhance recruitment of host stem cells into the implants. Flow cytometry and immunohistochemistry for CD29/CD45, CD146/α-smooth muscle actin, and c-kit demonstrated that this system significantly increased the number of stem cell-like cells within the implants when compared with other systems. In vitro culture of the cells that had infiltrated into the scaffolds from the combined system confirmed that host stem cells were recruited into these implants and indicated that they were capable of differentiation into multiple lineages. These results indicate that this combined system may lead to more efficient tissue regeneration.  相似文献   

18.
Stem cells in the dental pulp comprise rare populations lacking definitive cytological markers and thus are poorly characterized in vivo, especially in rat species. To gain more insight into the phenotypical characteristics and tissue distribution of these cells, we examined the distribution of stem-cell-associated marker-expressing cells and mRNA expression levels of stem-cell-associated markers in the rat molar. CD146-positive cells co-expressing microtubule-associated protein 1B were counted following double-labeling immunoperoxidase staining and their density in the coronal pulp, root pulp and periodontal ligament was compared. Moreover, mRNA expression levels of CD146, CD105, CD166 and secreted phosphoprotein 1 (SPP1; also known as osteopontin, a negative regulatory element of the stem cell niche) were analyzed in these regions by using real time polymerase chain reaction. The double-positive cells could be clearly distinguished from non-stem cells single-stained by either of the markers and showed a significantly higher density in the coronal pulp compared with the other regions (P<0.05). Moreover, mRNA expression levels of CD146, CD105 and CD166 were significantly higher in the coronal pulp than in the other regions (P<0.05). On the other hand, SPP1 mRNA expression was significantly higher in the periodontal ligament than in the pulp. Thus, the density of stem-cell-associated marker-expressing cells and stem-cell-associated gene expression levels are higher in the coronal pulp than in the root pulp and periodontal ligament, suggesting that the coronal pulp harbors more stem cells than the other regions.  相似文献   

19.
Mesenchymal stem cells derived from amniotic fluid have become one of the most potential stem cell source for cell-based therapy for the reason they can be harvested at low cost and without ethical problems. Here, we obtained amniotic fluid stem cells (AFSCs) from ovine amniotic fluid and studied the expansion capacity, cell markers expression, karyotype, and multilineage differentiation ability. In our work, AFSCs were subcultured to passage 62. The cell markers, CD29, CD44, CD73 and OCT4 which analyzed by RT-PCR were positive; CD44, CD73, CD90, CD105, NANOG, OCT4 analyzed by immunofluorescence and flow cytometry were also positive. The growth curves of different passages were all typically sigmoidal. The different passages cells took on a normal karyotype. In addition, AFSCs were successfully induced to differentiate into adipocytes, osteoblasts and chondrocytes. The results suggested that the AFSCs isolated from ovine maintained normal biological characteristics and their multilineage differentiation potential provides many potential applications in cell-based therapies and tissue engineering.  相似文献   

20.
Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression, we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly, we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation, illustrating a principle that may well apply in other contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号