首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
OAT (organic anion transporter) 2 [human gene symbol SLC22A7 (SLC is solute carrier)] is a member of the SLC22 family of transport proteins. In the rat, the principal site of expression of OAT2 is the sinusoidal membrane domain of hepatocytes. The particular physiological function of OAT2 in liver has been unresolved so far. In the present paper, we have used the strategy of LC (liquid chromatography)-MS difference shading to search for specific and cross-species substrates of OAT2. Heterologous expression of human and rat OAT2 in HEK (human embryonic kidney)-293 cells stimulated accumulation of the zwitterion trigonelline; subsequently, orotic acid was identified as an excellent and specific substrate of OAT2 from the rat (clearance=106 μl·min?1·mg of protein?1) and human (46 μl·min?1·mg of protein?1). The force driving uptake of orotic acid was identified as glutamate antiport. Efficient transport of glutamate by OAT2 was directly demonstrated by uptake of [3H]glutamate. However, because of high intracellular glutamate, OAT2 operates as glutamate efflux transporter. Thus expression of OAT2 markedly increased the release of glutamate (measured by LC-MS) from cells, even without extracellular exchange substrate. Orotic acid strongly trans-stimulated efflux of glutamate. We thus propose that OAT2 physiologically functions as glutamate efflux transporter. OAT2 mRNA was detected, after laser capture microdissection of rat liver slices, equally in periportal and pericentral regions; previous reports of hepatic release of glutamate into blood can now be explained by OAT2 activity. A specific OAT2 inhibitor could, by lowering plasma glutamate and thus promoting brain-to-blood efflux of glutamate, alleviate glutamate exotoxicity in acute brain conditions.  相似文献   

2.
Intracerebral accumulation of neurotoxic dicarboxylic acids (DCAs) plays an important pathophysiological role in glutaric aciduria type I and methylmalonic aciduria. Therefore, we investigated the transport characteristics of accumulating DCAs – glutaric (GA), 3-hydroxyglutaric (3-OH-GA) and methylmalonic acid (MMA) – across porcine brain capillary endothelial cells (pBCEC) and human choroid plexus epithelial cells (hCPEC) representing in vitro models of the blood–brain barrier (BBB) and the choroid plexus respectively. We identified expression of organic acid transporters 1 (OAT1) and 3 (OAT3) in pBCEC on mRNA and protein level. For DCAs tested, transport from the basolateral to the apical site (i.e. efflux) was higher than influx. Efflux transport of GA, 3-OH-GA, and MMA across pBCEC was Na+-dependent, ATP-independent, and was inhibited by the OAT substrates para-aminohippuric acid (PAH), estrone sulfate, and taurocholate, and the OAT inhibitor probenecid. Members of the ATP-binding cassette transporter family or the organic anion transporting polypeptide family, namely MRP2, P-gp, BCRP, and OATP1B3, did not mediate transport of GA, 3-OH-GA or MMA confirming the specificity of efflux transport via OATs. In hCPEC, cellular import of GA was dependent on Na+-gradient, inhibited by NaCN, and unaffected by probenecid suggesting a Na+-dependent DCA transporter. Specific transport of GA across hCPEC, however, was not found. In conclusion, our results indicate a low but specific efflux transport for GA, 3-OH-GA, and MMA across pBCEC, an in vitro model of the BBB, via OAT1 and OAT3 but not across hCPEC, an in vitro model of the choroid plexus.  相似文献   

3.
A complete randomised block design experiment was conducted to investigate the effects of benzoic acid inclusion level on nitrogen (N) metabolism, and manure ammonia (NH3) and odour emissions in finishing pigs. Sixteen boars (64 kg live weight ± 1.5 kg) were assigned to one of four dietary treatments (T) varying in benzoic acid concentration: (T1) 0 g benzoic acid/kg (as fed); (T2) 10 g benzoic acid/kg; (T3) 20 g benzoic acid/kg; (T4) 30 g benzoic acid/kg. Animals were housed in individual metabolism crates and feed was provided ad libitum. All diets were formulated to have similar concentration of digestible energy and ileal digestible lysine with benzoic acid replacing wheat in the diet. There was a linear decrease in NH3 emission (P<0.001), as the dietary benzoic acid concentration increased (141.4 mg/g versus 40.5 mg/g N intake (S.E.M. 12.1) over the 240-h storage period). However, there was no effect (P>0.05) of benzoic acid on odour concentration. Urinary nitrogen (N) excretion, total N excretion and the urinary:faecal N ratio were linearly reduced (P<0.05) with increasing benzoic acid inclusion. Furthermore, N retention increased linearly (P<0.05) as benzoic acid concentration increased from 0 g/kg to 30 g/kg in the diet. In conclusion, the inclusion of benzoic acid in the diet of finishing pigs has the potential to reduce total and urinary N excretion and the urinary to faecal N ratio. This was mirrored by reductions in manure NH3 emissions in the benzoic acid supplemented treatments.  相似文献   

4.
《Inorganica chimica acta》2006,359(7):2159-2169
Single-crystal X-ray studies have defined the structures of a number of novel adducts of the form CuX:dpex (2:1), X = (pseudo-)halide, dpex = bis(diphenylpnicogeno)alkane, Ph2E(CH2)xEPh2, E = P, As, of diverse types, solvated with acetonitrile. CuBr:dpem (2:1)2. 2MeCN (E = both P, As) are tetranuclear, derivative of the familiar ‘step’ structure, while CuCl:dpph (MeCN solvate) and CuBr:dppe (MeCN solvate) yield one-dimensional polymers (i.e., x = 1, 2, 6 for dppx, x = m, e, h), as also does CuSCN:dpam (MeCN solvate). In CuI:dpsm:MeCN (3:1:2) (‘dpsm’ = Ph2Sb(CH2)SbPh2), CuI:dpsm (2:1)2 ‘step’ units are connected into an infinite ‘stair’ polymer by interspersed (MeCN)CuI linkers.  相似文献   

5.
In the present study, we investigated the protective effect of Bacopa monniera, an indigenous Ayurvedic medicinal plant in India, against morphine-induced liver and kidney toxicity in rats. Morphine intoxicated rats received 10-160 mg/kg body weight of morphine hydrochloride intraperitoneally for 21 days. Bacopa monniera Extract (BME) pretreated rats were administered with BME (40 mg/kg) orally once a day 2 h before the injection of morphine for 21 days. Pretreatment with BME has shown to possess a significant protective effect against morphine-induced liver and kidney functions in terms of serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, alkaline phosphatase, lactate dehydrogenases and gamma-glutamyl transferase activities and urea, creatinine and uric acid level respectively. Histopathological changes of liver and kidney were also in accordance with the biochemical findings. The results of this study indicate that Bacopa monniera extract exerted a protection against morphine-induced liver and kidney toxicity.  相似文献   

6.
A novel series of monoamine reuptake inhibitors, the 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ols, have been discovered by combining virtual and focused screening efforts with design techniques. Synthesis of the two diastereomeric isomers of the molecule followed by chiral resolution of each enantiomer revealed the (2R,3S)-isomer to be a potent norepinephrine reuptake inhibitor (IC50 = 28 nM) with excellent selectivity over the dopamine transporter and 13-fold selectivity over the serotonin transporter.  相似文献   

7.
The effects of two inclusion levels of benzoic acid (5 and 20 g/kg diet; B5 and B20, respectively) vs. a control (C) and an antibiotic (tiamulin) supplemented (A; 150 mg/kg) diet on nutrient digestibility and selected biochemical parameters were investigated in 48 weaned (n = 12 per treatment) rabbits (35 days old). Blood samples were obtained (at 45 and 85 days of age) to measure erythrocyte glutathione peroxidase (GSH-Px) activity, plasma alkaline phosphatase (ALP) activity and Ca and P levels. At 56 days of age total tract apparent digestibility (TTAD) was determined. At the end of the trial (85 days) rabbits were slaughtered for subsequent measurements. GSH-Px activity was also determined in liver homogenates post-mortem. Benzoic acid inclusion level decreased linearly (P<0.05) the weight of total full gastrointestinal tract, resulting in a trend (P=0.058) to increased dressing yield. The TTAD of organic matter (OM) increased linearly (P<0.05), whereas that of dry matter, crude protein and gross energy tended to increase (P=0.067, P=0.090 and P=0.098, respectively) with benzoic acid increment. The TTAD of aNDFom, hemicelluloses and cellulose was affected quadratically (P<0.05) by benzoic acid supplementation, with the B5-fed rabbits showing the higher values. Plasma ALP activity and P levels were linearly reduced (P<0.001) by benzoic acid inclusion, but no influence was observed on GSH-Px activity in erythrocytes or liver. In conclusion, dietary benzoic acid affects the TTAD of OM and fibre fractions in a dose dependent manner, without having any adverse effect on the systemic markers (biochemical parameters) examined.  相似文献   

8.
Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of Plasmodium yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6 μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescence analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory activity against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml), respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature, and calculated pharmacokinetic properties suggests that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes.  相似文献   

9.
Regiospecific and conformationally restrained analogs of melphalan and dl-2-NAM-7 have been synthesized and their affinities for the large neutral amino acid transporter (LAT1) of the blood–brain barrier have been determined to assess their potential for accessing the CNS via facilitated transport. Several analogs had Ki values in the range 2.1–8.5 μM with greater affinities than that of either l-phenylalanine (Ki = 11 μM) or melphalan (Ki = 55 μM), but lower than dl-2-NAM-7 (Ki = 0.08 μM). The results indicate that regiospecific positioning of the mustard moiety on the aromatic ring in these analogs is very important for optimal affinity for the large neutral amino acid transporter, and that conformational restriction of the dl-2-NAM-7 molecule in benzonorbornane and indane analogs leads to 25- to 60-fold loss, respectively, in affinity.  相似文献   

10.
《Journal of Asia》2014,17(4):837-844
Helicoverpa armigera (Hübner) is one of the most important pests of a wide range of agricultural crops worldwide. Resistance of 10 tomato cultivars (‘Primoearly,’ ‘Riogrand,’ ‘CaljN3,’ ‘Kingstone,’ ‘Earlyurbana,’ ‘Petomech,’ ‘EarlyurbanaY,’ ‘Mobil,’ ‘Imprial’ and ‘Petoearly’) to H. armigera was evaluated under laboratory conditions at 25 ± 1 °C, 60 ± 5% RH and a photoperiod of 16:8 (L:D) hours using age-stage, two-sex life table parameters. The larval period ranged from 19.96 on ‘Riogrand’ to 24.58 days on ‘Imprial.’ The insects reared on ‘Imprial’ had the longest total preoviposition period (44.80 days) and those reared on ‘Riogrand’ had the shortest one (35.44 days). The longest adult longevity for female and male was observed on ‘EarlyurbanaY’ (14.40 days) and ‘Kingstone’ (15.00 days), respectively. Using age-stage, two-sex life table, the value of the net reproductive rate (R0) varied from 7.8 on ‘Imprial’ to 186.9 offspring per individual on ‘Petomech.’ The lowest value of the intrinsic rate of increase (r) and finite rate of increase (λ) was on ‘Imprial’ (0.0410 and 1.0423 day 1, respectively) and the highest was on ‘Petomech’ (0.1274 and 1.1359 day 1, respectively). The mean generation time (T) on different cultivars varied from 39.9 to 48.2 days. The results revealed that ‘Petomech’ was the most susceptible (suitable) and ‘Imprial’ was the most resistant (unsuitable) cultivar to this pest among the tomato cultivars tested.  相似文献   

11.
The evolutionary loss of hepatic urate oxidase (uricase) has resulted in humans with elevated serum uric acid (urate). Uricase loss may have been beneficial to early primate survival. However, an elevated serum urate has predisposed man to hyperuricemia, a metabolic disturbance leading to gout, hypertension, and various cardiovascular diseases. Human serum urate levels are largely determined by urate reabsorption and secretion in the kidney. Renal urate reabsorption is controlled via two proximal tubular urate transporters: apical URAT1 (SLC22A12) and basolateral URATv1/GLUT9 (SLC2A9). In contrast, the molecular mechanism(s) for renal urate secretion remain unknown. In this report, we demonstrate that an orphan transporter hNPT4 (human sodium phosphate transporter 4; SLC17A3) was a multispecific organic anion efflux transporter expressed in the kidneys and liver. hNPT4 was localized at the apical side of renal tubules and functioned as a voltage-driven urate transporter. Furthermore, loop diuretics, such as furosemide and bumetanide, substantially interacted with hNPT4. Thus, this protein is likely to act as a common secretion route for both drugs and may play an important role in diuretics-induced hyperuricemia. The in vivo role of hNPT4 was suggested by two hyperuricemia patients with missense mutations in SLC17A3. These mutated versions of hNPT4 exhibited reduced urate efflux when they were expressed in Xenopus oocytes. Our findings will complete a model of urate secretion in the renal tubular cell, where intracellular urate taken up via OAT1 and/or OAT3 from the blood exits from the cell into the lumen via hNPT4.  相似文献   

12.
Three novel organotin complexes with general formula Sn(OH)(bz)2L (bz = benzyl, HL = 2-, 3-, or 4-(1-oxo-1H-2,3-dihydroisoindol-2-yl)benzoic acid) and one of their ligands were prepared and characterized. In vitro antifungal and antibacterial activities of these complexes and ligands were investigated with the representative strains of Candida albicans, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Their fluorescence properties have also been discussed.  相似文献   

13.
Glucocorticoids can increase the extracellular concentrations of glutamate, the major excitatory neurotransmitter. We investigated the effects of corticosterone on the activity of a glutamate transporter, excitatory amino acid carrier 1 (EAAC1; also called excitatory amino acid transporter type 3 [EAAT3]), and the roles of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) in regulating these effects. Rat EAAC1 was expressed in Xenopus oocytes by injecting mRNA. l-Glutamate (30 μM)-induced membrane currents were measured using the two-electrode voltage clamp technique. Exposure of these oocytes to corticosterone (0.01–1 μM) for 72 h decreased EAAC1 activity in a dose-dependent fashion, and this inhibition was incubation time-dependent. Corticosterone (0.01 μM for 72 h) significantly decreased the Vmax, but not the Km, of EAAC1 for glutamate. Furthermore, pretreatment of oocytes with staurosporine, a PKC inhibitor, significantly decreased EAAC1 activity (1.00 ± 0.06 to 0.70 ± 0.05 μC; P < 0.05). However, no statistical differences were observed between oocytes treated with staurosporine, corticosterone, or corticosterone plus staurosporine. Similar patterns of responses were achieved by chelerythrine or calphostin C, other PKC inhibitors. Phorbol-12-myristate-13-acetate (PMA), a PKC activator, inhibited corticosterone-induced reduction in EAAC1 activity. Pretreating oocytes with wortmannin or LY294002, PI3K inhibitors, also significantly reduced EAAC1 activity, but no difference was observed between oocytes treated with wortmannin, corticosterone, or wortmannin plus corticosterone. The above results suggest that corticosterone exposure reduces EAAC1 activity and this effect is PKC- and PI3K-dependent.  相似文献   

14.
After incubation of muscle preparations with [U-14C]branched-chain amino acids or 2-oxo acids, radioactive metabolites were separated, identified and quantified. Homogenates of rat heart and skeletal muscle incubated with 4-methyl-2-oxopentanoate accumulated isovalerate, 3-hydroxyisovalerate and the corresponding carnitine esters. Incubation with 3-methyl-2-oxobutanoate resulted in the production of isobutyrate, 3-hydroxyisobutyrate and their carnitine esters. Addition of L-carnitine increased the production of the esters. The enzymes 3-methylcrotonyl-CoA carboxylase and 3-hydroxyisobutyric acid dehydrogenase apparently are inactive during incubation of muscle homogenates. With liver homogenates the degradation of both 2-oxo acids was more complete. Rat hemidiaphragms incubated with leucine, valine and isoleucine accumulated the corresponding branched-chain 2-oxo acids, fatty acids and hydroxylated fatty acids. The degradation of valine was markedly limited by the release of these metabolites. Considerable amounts (relatively smaller for valine) of radioactivity were also recovered in CO2 and glutamine and glutamate. Incubations with branched-chain 2-oxo acids gave the same radioactive products, except for glutamine and glutamate. Radioactivity was never found in lactate, pyruvate or alanine. These data indicate that the carbon-chains of amino acids entering the citric acid cycle in muscle, are not used for oxidation or for alanine synthesis, but are converted exclusively to glutamine.  相似文献   

15.
Olive varieties ‘Koroneiki’, ‘Kalamata’, ‘Mastoidis’ and ‘Amigdalolia’ were employed in two experiments for 3 years to assess the effect of temperature on olive pollen germination and tube growth in relation to relative humidity and genotype. Pollen samples were subjected to pre-incubation at 10, 20, 30 or 40 °C in combination with decreased air relative humidity – 80, 40, 30 or 20%, respectively – for 24 h to simulate temperature stress that is observed during pollen dispersal; and subsequently in vitro cultured. In the second experiment, pollen was exposed at 15, 20, 25 and 30 °C for 24 h in vitro to evaluate pollen response in conditions of water and nutrients availability and to determine the optimum pollen germination and tube growth temperatures for each cultivar. The highest pre-incubation temperature treatment (40 °C) prevented pollen germination in ‘Koroneiki’ and ‘Mastoidis’, with the less affected varieties (‘Amigdalolia’ and ‘Kalamata’) having average germination percentages of only 7.6 and 2%, respectively. Pre-incubation at 30 °C had a negative impact on pollen germination in ‘Koroneiki’ (?65%), ‘Kalamata’ (?20%) and ‘Amigdalolia’ (?72%) compared to the control (20 °C). Pollen pre-incubation at 40 °C decreased significantly the pollen tube length in ‘Kalamata’ (?50%) and ‘Amigdalolia’ (?52%). In the second experiment, in vitro pollen germination increased after incubation at 25 °C for ‘Koroneiki’ (+6%), ‘Mastoidis’ (+52%), ‘Kalamata’ (+10%) and ‘Amigdalolia’ (+10%) compared to the control (20 °C). At 30 °C germination percentages for ‘Mastoidis’, ‘Kalamata’ and ‘Amigdalolia’ were 8, 6 and 14% higher, respectively, compared to the control (20 °C). Pollen tube length also increased with incubation temperature for all of the studied cultivars. Based on the cumulative stress response index (CSRI) that was calculated for high temperature stress the varieties were classified: ‘Mastoidis’ and ‘Kalamata’ as tolerant and ‘Koroneiki’ and ‘Amigdalolia’ as intermediate at 30 °C while all studied cultivars were sensitive at 40 °C. The observed strong genotype-differentiated response in high and low temperature stress could be exploited by plant breeders towards producing new tolerant olive varieties.  相似文献   

16.
Common ‘caged’ nucleic acid binders, which can be applied for temporal and spatial control of gene expression, are activated by high energy light (<450 nm). The light of this type is damaging to cells and is strongly absorbed by cellular components. Therefore, shifting the triggering light to the visible region (>550 nm) is highly desirable. Herein we report on a cyclic peptide nucleic acid (PNA), whose backbone contains a 9,10-dialkoxy-substituted anthracene linker. The sequence of this compound was selected to be complementary to a representative microRNA (miR-92). We demonstrated that the cyclic PNA does not bind complementary nucleic acids and is, correspondingly, ‘caged’. Its uncaging can be conducted by its exposure to red light (635 nm) in the presence of pyropheophorbide-a. The latter process is mediated by singlet oxygen (1O2), which cleaves the 9,10-dialcoxyanthracene linker within the PNA with formation of a linear PNA, an efficient binder of the complementary ribonucleic acid. This is the first example of a red light-activated, ‘caged’ peptide nucleic acid.  相似文献   

17.
We used cutinase from the filamentous fungi Aspergillus oryzae to produce dairy flavors. Secretory and displayed forms of cutinase were investigated using salt-free butter, which is composed mostly of triacylglycerides, as the substrate. The secretory form of cutinase, which was produced in recombinant A. oryzae, was suitable for producing butyric acids (16.8 mol%). Also, cutinase displayed on the cell surface of the yeast Saccharomyces cerevisiae as a fusion protein with α-agglutinin released butyric acid at a 2.7-fold rate (45.4 mol%) higher than that of the secreted form. Yeasts carrying two copies of cutinase genes into their chromosomes, which were constructed using the HELOH method, released free fatty acids rapidly and showed 2-fold higher lipase activity compared with yeasts carrying one copy of the cutinase gene.  相似文献   

18.
Excitatory amino acid carrier 1 (EAAC1 also called EAAT3) is a Na+-dependent glutamate transporter expressed by both glutamatergic and GABAergic neurons. It provides precursors for the syntheses of glutathione and GABA and contributes to the clearance of synaptically released glutamate. Mice deleted of EAAC1 are more susceptible to neurodegeneration in models of ischemia, Parkinson’s disease, and aging. Antisense knock-down of EAAC1 causes an absence seizure-like phenotype. Additionally, EAAC1 expression increases after chemonvulsant-induced seizures in rodent models and in tissue specimens from patients with refractory epilepsy. The goal of the present study was to determine if the absence of EAAC1 affects the sensitivity of mice to seizure-induced cell death. A chemoconvulsant dose of pilocarpine was administered to EAAC1−/− mice and to wild-type controls. Although EAAC1−/− mice experienced increased latency to seizure onset, no significant differences in behavioral seizure severity or mortality were observed. We examined EAAC1 immunofluorescence 24 h after pilocarpine administration and confirmed that pilocarpine causes an increase in EAAC1 protein. Forty-eight hours after induction of seizures, cell death was measured in hippocampus and in cortex using Fluoro-Jade C. Surprisingly, there was ∼2-fold more cell death in area CA1 of wild-type mice than in the corresponding regions of the EAAC1−/− mice. Together, these studies indicate that absence of EAAC1 results in either a decrease in pilocarpine-induced seizures that is not detectable by behavioral criteria (surprising, since EAAC1 provides glutamate for GABA synthesis), or that the absence of EAAC1 results in less pilocarpine/seizure-induced cell death, possible explanations as discussed.  相似文献   

19.
20.
The synthesis of the omega-3 long-chain polyunsaturated fatty acids (LCPUFA)  eicosapentaenoic acid (EPA; 20:5n− 3) and docosahexaenoic acid (DHA; 22:6n  3) from dietary α-linolenic acid (ALA; 18:3n  3) requires three desaturation and three elongation steps in vertebrates. The elongation of EPA to docosapentaenoic acid (DPA; 22:5n  3) can be catalysed by the elongase enzymes Elovl5 or Elovl2, but further elongation of DPA to 24:5n  3, the penultimate precursor of DHA, is limited to Elovl2, at least in mammals. Elovl5 enzymes have been characterised from seventeen fish species but Elovl2 enzymes have only been characterised in two of these fish. The essentiality of Elovl2 for DHA synthesis is unknown in fish. This study is the first to identify an Elovl2 in rainbow trout (Oncorhynchus mykiss) and functionally characterise the Elovl5 and Elovl2 using a yeast expression system. Elovl5 was active with C18–20 PUFA substrates and not C22 PUFA. In contrast, Elovl2 was active with C20–22 PUFA substrates and not C18 PUFA. Thus, rainbow trout is dependent on Elovl2 for DPA to 24:5n  3 synthesis and ultimately DHA synthesis. The expression of elovl5 was significantly higher than elovl2 in liver. Elucidating this dependence on Elovl2 to elongate DPA and the low elovl2 gene expression compared with elovl5 are critical findings in understanding the potential for rainbow trout to synthesize DHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号