首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Rice plants fed on by fall armyworm ( Spodoptera frugiperda , FAW) caterpillars emit a blend of volatiles dominated by terpenoids. These volatiles were highly attractive to females of the parasitoid Cotesia marginiventris . Microarray analysis identified 196 rice genes whose expression was significantly upregulated by FAW feeding, 18 of which encode metabolic enzymes potentially involved in volatile biosynthesis. Significant induction of expression of seven of the 11 terpene synthase ( TPS ) genes identified through the microarray experiments was confirmd using real-time RT-PCR. Enzymes encoded by three TPS genes, Os02g02930, Os08g07100 and Os08g04500, were biochemically characterized. Os02g02930 was found to encode a monoterpene synthase producing the single product S- linalool, which is the most abundant volatile emitted from FAW-damaged rice plants. Both Os08g07100 and Os08g04500 were found to encode sesquiterpene synthases, each producing multiple products. These three enzymes are responsible for production of the majority of the terpenes released from FAW-damaged rice plants. In addition to TPS genes, several key genes in the upstream terpenoid pathways were also found to be upregulated by FAW feeding. This paper provides a comprehensive analysis of FAW-induced volatiles and the corresponding volatile biosynthetic genes potentially involved in indirect defense in rice. Evolution of the genetic basis governing volatile terpenoid biosynthesis for indirect defense is discussed.  相似文献   

4.
Domain of unknown function 1644(DUF1644) is a Rhighly conserved amino acid sequence motif present only in plants. Analysis of expression data of the family of DUF1644-containing genes indicated that they may regulate responses to abiotic stress in rice. Here we present our discovery of the role of Os SIDP366, a member of the DUF1644 gene family, in response to drought and salinity stresses in rice. Transgenic rice plants overexpressing Os SIDP366 showed enhanced drought and salinity tolerance and reduced water loss as compared to that in the control, whereas plants with downregulated Os SIDP366 expression levels using RNA interference(RNAi) were more sensitive to salinity and drought treatments. The sensitivity to abscisic acid(ABA)treatment was not changed in Os SIDP366-overexpressing plants, and Os SIDP366 expression was not affected in ABAdeficient mutants. Subcellular localization analysis revealed that Os SIDP366 is presented in the cytoplasmic foci that colocalized with protein markers for both processing bodies(PBs) and stress granules(SGs) in rice protoplasts. Digital gene expression(DGE) profile analysis indicated that stress-related genes such as SNAC1, Os HAK5 and PRs were upregulated in Os SIDP366-overexpressing plants. These results suggest that Os SIDP366 may function as a regulator of the PBs/SGs and positively regulate salt and drought resistance in rice.  相似文献   

5.
Sakuranetin, the major flavonoid phytoalexin in rice, is induced by ultraviolet (UV) irradiation, CuCl(2) treatment, jasmonic acid treatment, and infection by phytopathogens. It was recently demonstrated that sakuranetin has anti-inflammatory activity, anti-mutagenic activity, anti-pathogenic activities against Helicobacter pylori, Leishmania, and Trypanosoma and contributes to the maintenance of glucose homeostasis in animals. Thus, sakuranetin is a useful compound as a plant antibiotic and a potential pharmaceutical agent. Sakuranetin is biosynthesized from naringenin by naringenin 7-O-methyltransferase (NOMT). In previous research, rice NOMT (OsNOMT) was purified to apparent homogeneity from UV-treated wild-type rice leaves, but the purified protein, named OsCOMT1, exhibited caffeic acid O-methyltransferase (COMT) activity and not NOMT activity. In this study, we found that OsCOMT1 does not contribute to sakuranetin production in rice in vivo, and we purified OsNOMT using the oscomt1 mutant. A crude protein preparation from UV-treated oscomt1 leaves was subjected to three sequential purification steps, resulting in a 400-fold purification from the crude enzyme preparation. Using SDS-PAGE, the purest enzyme preparation showed a minor band at an apparent molecular mass of 40 kDa. Two O-methyltransferase-like proteins, encoded by Os04g0175900 and Os12g0240900, were identified from the 40-kDa band by MALDI-TOF/TOF analysis. Recombinant Os12g0240900 protein showed NOMT activity, but the recombinant Os04g0175900 protein did not. Os12g0240900 expression was induced by jasmonic acid treatment in rice leaves prior to sakuranetin accumulation, and the Os12g0240900 protein showed reasonable kinetic properties to OsNOMT. On the basis of these results, we conclude that Os12g0240900 encodes an OsNOMT.  相似文献   

6.
Seed shattering is one of the main traits related with the domestication of cultivated rice and with the invasiveness and persistence of weedy rice. Two independent studies in 2006 have indicated that qSH1 in Japonica and Sh4 in Indica rice are major genes governing this trait. However, a wide variation of seed shattering occurs in weedy rice ecotypes from the same geographic region and even within the same ecotype. The aim of this study was to evaluate the nucleotide variability of known and putative genes related to seed shattering in cultivated rice and to identify and validate new genes related to this trait in weedy rice. The qSH1 gene was not associated with seed shattering in the evaluated genotypes. The nucleotide variability of the genes Os01g0849100 and Os08g0512400, previously identified based on a genome‐wide resequencing study, was related to seed shattering in rice. The nucleotide variability of three single nucleotide polymorphisms (SNPs) of the OsXTH8 gene, which is related to cell wall biosynthesis, was not associated with seed shattering. However, the high expression of this gene was related to the occurrence of this trait. This study evaluated jointly a series of genes involved in rice seed shattering and indicated that the genes OsXTH8, Os08g0512400 and Os01g0849100 are important for the regulation of this trait in weedy rice in addition to previously described genes. Seed shattering in weedy rice has a more complex regulation than in cultivated rice where few major genes were identified.  相似文献   

7.
《遗传学报》2021,48(8):695-705
Coordination between the sporophytic tissue and the gametic pollen within anthers is tightly controlled to achieve the optimal pollen fitness. Glucose-6-phosphate/phosphate translocator(GPT) transports glucose-6-phosphate, a key precursor of starch and/or fatty acid biosynthesis, into plastids. Here, we report the functional characterization of Os GPT1 in the rice anther development and pollen fertility. Pollen grains from homozygous osgpt1 mutant plants fail to accumulate starch granules, resulting in pollen sterility. Genetic analyses reveal a sporophytic effect for this mutation. Os GPT1 is highly expressed in the tapetal layer of rice anther. Degeneration of the tapetum, an important process to provide cellular contents to support pollen development, is impeded in osgpt1 plants. In addition, defective intine and exine are observed in the pollen from osgpt1 plants. Expression levels of multiple genes that are important to tapetum degeneration or pollen wall formation are significantly decreased in osgpt1 anthers. Previously, we reported that At GPT1 plays a gametic function in the accumulation of lipid bodies in Arabidopsis pollen. This report highlights a sporophytic role of Os GPT1 in the tapetum degeneration and pollen development. The divergent functions of Os GPT1 and At GPT1 in pollen development might be a result of their independent evolution after monocots and dicots diverged.  相似文献   

8.
The aerial parts of higher plants are generated from the shoot apical meristem(SAM). In this study, we isolated a small rice(Oryza sativa L.) mutant that showed premature termination of shoot development and was named mini rice 1(mini1). The mutant was first isolated from a japonica cultivar Zhonghua11(ZH11) subjected to ethyl methanesulfonate(EMS)treatment. With bulked segregant analysis(BSA) and map-based cloning method, Mini1 gene was finally fine-mapped to an interval of 48.6 kb on chromosome 9. Sequence analyses revealed a single base substitution from G to A was found in the region, which resulted in an amino acid change from Gly to Asp.The candidate gene Os09g0363900 was predicted to encode a putative adhesion of calyx edges protein ACE(putative HOTHEAD precursor) and genetic complementation experiment confirmed the identity of Mini1. Os09g0363900 contains glucose-methanol-choline(GMC) oxidoreductase and NAD(P)-binding Rossmann-like domain, and exhibits high similarity to Arabidopsis HOTHEAD(HTH). Expression analysis indicated Mini1 was highly expressed in young shoots but lowly in roots and the expression level of most genes involved in auxin biosynthesis and signal transduction were reduced in mutant.We conclude that Mini1 plays an important role in maintaining SAM activity and promoting shoot development in rice.  相似文献   

9.
Elucidation of genome sequence provides an excellent platform to understand detailed complexity of the various gene families. Hsp100 is an important family of chaperones in diverse living systems. There are eight putative gene loci encoding for Hsp100 proteins in Arabidopsis genome. In rice, two full-length Hsp100 cDNAs have been isolated and sequenced so far. Analysis of rice genomic sequence by in silico approach showed that two isolated rice Hsp100 cDNAs correspond to Os05g44340 and Os02g32520 genes in the rice genome database. There appears to be three additional proteins (encoded by Os03g31300, Os04g32560 and Os04g33210 gene loci) that are variably homologous to Os05g44340 and Os02g32520 throughout the entire amino acid sequence. The above five rice Hsp100 genes show significant similarities in the signature sequences known to be conserved among Hsp100 proteins. While Os05g44340 encodes cytoplasmic Hsp100 protein, those encoded by the other four genes are predicted to have chloroplast transit peptides.  相似文献   

10.
11.
Lignin and related metabolites have diverse and important functions for plant growth and development. 4-Coumarate: CoA ligase (4CL, EC 6.2.1.12) is one of the key enzymes in phenylpropanoid metabolism and lignin biosynthesis. In a previous study, maize (Zea maize L. cv. Yellowcorn) growth was suppressed to a greater extent by root-applied chalcone than rice (Oryza sativa L. cv. Nipponbare). The objective of this study is to clarify the relationship between the growth suppression and 4CL properties. In crude extracts, total 4CL activity and total protein content of rice were higher 1.8- and 2.7-fold than that of maize, respectively. After a gel-filtration chromatography, a single peak of 4CL activity from maize and rice was evident coincidently for both species. After anion-exchange chromatography, a single peak of 4CL activity was also apparent for both species; however, the peak of maize did not coincide with that of rice. The enzyme activity of maize and rice exhibited similar order of substrate specificities when using p-coumaric, cinnamic, caffeic, ferulic and sinapic acids substrates. Chalcone inhibited 4CL activity in maize more strongly than in rice, and 4CL kinetic data in the presence and absence of chalcone exhibited uncompetitive inhibition in both maize and rice. These results suggest that total activity and the inhibitory property of 4CL contributes to differences in growth suppression by chalcone between maize and rice, although further efforts are needed to clarify the potential of 4CL as a novel action site of the growth suppression.  相似文献   

12.
Calcium-dependent protein kinases(CPKs)are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs and the molecular mechanisms underlying their activity remain largely unknown. Here, we characterized the function of Os CPK_(24), a cytosol-localized calciumdependent protein kinase in rice. Os CPK_(24) was universally and highly expressed in rice plants and was induced by cold treatment. Whereas Os CPK_(24) knockdown plants exhibited increased sensitivity to cold compared to wild type(WT), Os CPK_(24)-overexpressing plants exhibited increased cold tolerance. Plants overexpressing Os CPK_(24) exhibited increased accumulation of proline(an osmoprotectant) and glutathione(an antioxidant) and maintained a higher GSH/GSSG(reduced glutathione to oxidized glutathione) ratio during cold stress compared to WT. In addition to these effects in response to cold stress, we observed the kinase activity of Os CPK_(24) varied under different calcium concentrations. Further,Os CPK_(24) phosphorylated Os Grx_(10), a glutathionedependent thioltransferase, at rates modulated by changes in calcium concentration. Together, our results support the hypothesis that Os CPK_(24) functions as a positive regulator of cold stress tolerance in rice, a process mediated by calcium signaling and involving phosphorylation and the inhibition of Os Grx_(10) to sustain higher glutathione levels.  相似文献   

13.
14.
The plant hormone auxin plays a crucial role in lateral root development. To better understand the molecular mechanisms underlying lateral root formation,an auxin-responsive gene OsCYP2(Os02g0121300) was characterized from rice. Compared to the wild type,OsCYP2-RNAi(RNA interference) lines exhibited distinctive defects in lateral root development. Yeast two-hybrid and glutathione S-transferase pull-down results confirmed that OsCYP2 interacted with a C2HC-type zinc finger protein(OsZFP, Os01g0252900) which is located in the rice nucleus. T_2 OsZFP-RNAi lines had significantly fewer lateral roots than did wild-type plants, which suggests a role for OsCYP2 and OsZFP in regulating lateral root development.Quantitative real-time polymerase chain reaction showed that the expression of certain Aux/IAA(auxin/indole-3-acetic acid) genes was altered in OsCYP2-and Os ZFP-RNAi lines in response to IAA. These findings imply that OsCYP2 and OsZFP participate in IAA signal pathways controlling lateral root development. More importantly, OsIAA11 showed functional redundancy not only in OsCYP2-RNAi lines but also in Os ZFP-RNAi lines, which provides important clues for the elucidation of mechanisms controlling lateral root development in response to auxin.  相似文献   

15.

Key message

OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice.

Abstract

Phosphate (Pi) starvation response is a sophisticated process for plant in the natural environment. In this process, PHOSPHATE STARVATION RESPONSE 1 (PHR1) subfamily genes play a central role in regulating Pi-starvation signaling and Pi-homeostasis. Besides the three PHR1 orthologs in Oryza sativa L. (Os) [(Os) PHR1, (Os) PHR2, and (Os) PHR3], which were reported to regulated Pi-starvation signaling and Pi-homeostasis redundantly, a close related PHR1 ortholog [designated as (Os) PHR4] is presented in rice genome with unknown function. In this study, we found that OsPHR4 is a Pi-starvation induced gene and mainly expresses in vascular tissues through all growth and development periods. The expression of OsPHR4 is positively regulated by OsPHR1, OsPHR2 and OsPHR3. The nuclear located OsPHR4 can respectively interact with other three PHR1 subfamily members to regulate downstream Pi-starvation induced genes. Consistent with the positive role of PHR4 in regulating Pi-starvation signaling, the OsPHR4 overexpressors display higher Pi accumulation in the shoot and elevated expression of Pi-starvation induced genes under Pi-sufficient condition. Besides, moderate growth retardation and repression of the Pi-starvation signaling in the OsPHR4 RNA interfering (RNAi) transgenic lines can be observed under Pi-deficient condition. Together, we propose that OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice.
  相似文献   

16.
17.
Lysine (Lys) is the first limiting essential amino acid in rice, a stable food for half of the world population. Efforts, including genetic engineering, have not achieved a desirable level of Lys in rice. Here, we genetically engineered rice to increase Lys levels by expressing bacterial lysine feedback‐insensitive aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS) to enhance Lys biosynthesis; through RNA interference of rice lysine ketoglutaric acid reductase/saccharopine dehydropine dehydrogenase (LKR/SDH) to down‐regulate its catabolism; and by combined expression of AK and DHPS and interference of LKR/SDH to achieve both metabolic effects. In these transgenic plants, free Lys levels increased up to ~12‐fold in leaves and ~60‐fold in seeds, substantially greater than the 2.5‐fold increase in transgenic rice seeds reported by the only previous related study. To better understand the metabolic regulation of Lys accumulation in rice, metabolomic methods were employed to analyse the changes in metabolites of the Lys biosynthesis and catabolism pathways in leaves and seeds at different stages. Free Lys accumulation was mainly regulated by its biosynthesis in leaves and to a greater extent by catabolism in seeds. The transgenic plants did not show observable changes in plant growth and seed germination nor large changes in levels of asparagine (Asn) and glutamine (Gln) in leaves, which are the major amino acids transported into seeds. Although Lys was highly accumulated in leaves of certain transgenic lines, a corresponding higher Lys accumulation was not observed in seeds, suggesting that free Lys transport from leaves into seeds did not occur.  相似文献   

18.
Jasmonic acid(JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase(JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate(Me JA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene,Os JMT1, whose encoding protein was localized in the cytosol, we found that the recombinant Os JMT1 protein catalyzed JA to Me JA. Os JMT1 is up-regulated in response to infestation with the brown planthopper(BPH; Nilaparvata lugens). Plants in which Os JMT1 had been overexpressed(oeJMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased Me JA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine(JAIle). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs,probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H_2O_2 and Me JA in oe-JMT plants. These results indicate that Os JMT1,by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.  相似文献   

19.
A rice (Oryza sativa) Rac/Rop GTPase, Os Rac1, is involved in innate immunity, but its molecular function is largely unknown. RAR1 (for required for Mla12 resistance) and HSP90 (a heat shock protein 90 kD) are important components of R gene-mediated disease resistance, and their function is conserved in several plant species. HSP90 has also recently been shown to be important in mammalian innate immunity. However, their functions at the molecular level are not well understood. In this study, we examined the functional relationships between Os Rac1, RAR1, and HSP90. Os RAR1-RNA interference (RNAi) rice plants had impaired basal resistance to a compatible race of the blast fungus Magnaporthe grisea and the virulent bacterial blight pathogen Xanthomonas oryzae. Constitutively active Os Rac1 complemented the loss of resistance, suggesting that Os Rac1 and RAR1 are functionally linked. Coimmunoprecipitation experiments with rice cell culture extracts indicate that Rac1 forms a complex with RAR1, HSP90, and HSP70 in vivo. Studies with Os RAR1-RNAi and treatment with geldanamycin, an HSP90-specific inhibitor, showed that RAR1 and HSP90 are essential for the Rac1-mediated enhancement of pathogen-associated molecular pattern-triggered immune responses in rice cell cultures. Furthermore, the function of HSP90, but not RAR1, may be essential for their association with the Rac1 complex. Os Rac1 also regulates RAR1 expression at both the mRNA and protein levels. Together, our results indicate that Rac1, RAR1, HSP90, and HSP70 form one or more protein complexes in rice cells and suggest that these proteins play important roles in innate immunity in rice.  相似文献   

20.
Wang Q  Hillwig ML  Wu Y  Peters RJ 《Plant physiology》2012,158(3):1418-1425
All higher plants contain an ent-kaurene oxidase (KO), as such a cytochrome P450 (CYP) 701 family member is required for gibberellin (GA) phytohormone biosynthesis. While gene expansion and functional diversification of GA-biosynthesis-derived diterpene synthases into more specialized metabolism has been demonstrated, no functionally divergent KO/CYP701 homologs have been previously identified. Rice (Oryza sativa) contains five CYP701A subfamily members in its genome, despite the fact that only one (OsKO2/CYP701A6) is required for GA biosynthesis. Here we demonstrate that one of the other rice CYP701A subfamily members, OsKOL4/CYP701A8, does not catalyze the prototypical conversion of the ent-kaurene C4α-methyl to a carboxylic acid, but instead carries out hydroxylation at the nearby C3α position in a number of related diterpenes. In particular, under conditions where OsKO2 catalyzes the expected conversion of ent-kaurene to ent-kaurenoic acid required for GA biosynthesis, OsKOL4 instead efficiently reacts with ent-sandaracopimaradiene and ent-cassadiene to produce the corresponding C3α-hydroxylated diterpenoids. These compounds are expected intermediates in biosynthesis of the oryzalexin and phytocassane families of rice antifungal phytoalexins, respectively, and can be detected in rice plants under the appropriate conditions. Thus, it appears that OsKOL4 plays a role in the more specialized diterpenoid metabolism of rice, and our results provide evidence for divergence of a KO/CYP701 family member from GA biosynthesis. This further expands the range of enzymes recruited from the ancestral GA primary pathway to the more complex and specialized labdane-related diterpenoid metabolic network found in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号