首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Recent studies have highlighted a crucial regulatory role of the cytokine IL-9 in driving immune responses in chronic inflammatory and autoimmune diseases at mucosal surfaces. IL-9 activates various types of immune and non-immune cells carrying the membrane bound IL-9R. IL-9 signaling plays a pivotal role in controlling the differentiation and activation of these cells by inducing the Jak/STAT pathway. In particular, IL-9 induces activation of T helper cells and affects the function of various tissue resident cells such as mast cells and epithelial cells in the mucosa. Importantly, recent findings suggest that blockade of IL-9 signaling is effective in treating experimental models of autoimmune and chronic inflammatory diseases such as inflammatory bowel diseases, allergic disorders such as food allergy and asthma. Thus, blockade of IL-9 and IL-9R signaling emerges as potentially novel approach for therapy of inflammatory diseases in the mucosal immune system.  相似文献   

2.
Among the potential outcomes of an aberrantly functioning immune system are allergic disease and autoimmunity. Although it has been assumed that the underlying mechanisms mediating these conditions are completely different, recent evidence shows that mast cells provide a common link. Mast cells reside in most tissues, are particularly prevalent at sites of Ag entry, and act as sentinel cells of the immune system. They express many inflammatory mediators that affect both innate and adaptive cellular function. They contribute to pathologic allergic inflammation but also serve an important protective role in bacterial and parasite infections. Given the proinflammatory nature of autoimmune responses, it is not surprising that studies using murine models of autoimmunity clearly implicate mast cells in the initiation and/or progression of autoimmune disease. In this review, we discuss the defined and hypothesized mechanisms of mast cell influence on autoimmune diseases, including their surprising and newly discovered role as anti-inflammatory cells.  相似文献   

3.
Deregulated TNF production, be it low or high, characterizes many autoimmune diseases. Recent evidence supports a dualistic, pro-inflammatory and immune- or disease-suppressive role for TNF in these conditions. Blocking TNF in autoimmune-prone chronic inflammatory diseases may, therefore, lead to unpredictable outcomes, depending on timing and duration of treatment. Indeed, blockade of TNF in human rheumatoid arthritis or inflammatory bowel disease patients, although so far impressively beneficial for the majority of patients, it has also led to a significant incidence of drug induced anti-dsDNA production or even in manifestations of lupus and neuro-inflammatory disease. Notably, anti-TNF treatment of multiple sclerosis patients has led almost exclusively to immune activation and disease exacerbation. We discuss here recent evidence in murine disease models, indicating an heterogeneity of TNF receptor usage in autoimmune suppression versus inflammatory tissue damage, and put forward a rationale for a predictably beneficial effect of 'anti-TNFR' instead of 'anti-TNF' treatment in human chronic inflammatory and autoimmune conditions.  相似文献   

4.
Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed.  相似文献   

5.
Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.  相似文献   

6.
Allergic asthma is a chronic inflammatory disease and despite the introduction of potent and effective drugs, the prevalence has increased substantially over the past few decades. The explanation that has attracted the most attention is the 'hygiene hypothesis', which suggests that the increase in allergic diseases is caused by a cleaner environment and fewer childhood infections. Indeed, certain mycobacterial strains can cause a shift from T-helper cell 2 (Th2) to Th1 immune responses, which may subsequently prevent the development of allergy in mice. Although the reconstitution of the balance between Th1 and Th2 is an attractive theory, it is unlikely to explain the whole story, as autoimmune diseases characterized by Th1 responses can also benefit from treatment with mycobacteria and their prevalence has also increased in parallel to allergies. Here we show that treatment of mice with SRP299, a killed Mycobacterium vaccae-suspension, gives rise to allergen-specific CD4+CD45RB(Lo) regulatory T cells, which confer protection against airway inflammation. This specific inhibition was mediated through interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta), as antibodies against IL-10 and TGF-beta completely reversed the inhibitory effect of CD4+CD45RB(Lo) T cells. Thus, regulatory T cells generated by mycobacteria treatment may have an essential role in restoring the balance of the immune system to prevent and treat allergic diseases.  相似文献   

7.
The mucosal cytokine response of healthy humans to parasitic helminths has never been reported. We investigated the systemic and mucosal cytokine responses to hookworm infection in experimentally infected, previously hookworm naive individuals from non-endemic areas. We collected both peripheral blood and duodenal biopsies to assess the systemic immune response, as well as the response at the site of adult worm establishment. Our results show that experimental hookworm infection leads to a strong systemic and mucosal Th2 (IL-4, IL-5, IL-9 and IL-13) and regulatory (IL-10 and TGF-β) response, with some evidence of a Th1 (IFN-γ and IL-2) response. Despite upregulation after patency of both IL-15 and ALDH1A2, a known Th17-inducing combination in inflammatory diseases, we saw no evidence of a Th17 (IL-17) response. Moreover, we observed strong suppression of mucosal IL-23 and upregulation of IL-22 during established hookworm infection, suggesting a potential mechanism by which Th17 responses are suppressed, and highlighting the potential that hookworms and their secreted proteins offer as therapeutics for human inflammatory diseases.  相似文献   

8.
Allergic and autoimmune diseases represent immunopathological reactions of an organism to antigens. Despite that the allergy is a result of exaggerated immune response to foreign antigens (allergens) and autoimmune diseases are characterized by the pathological response to internal antigens (autoantigens), the underlying mechanisms of these diseases are probably common. Thus, both types of diseases represent variations in the hypersensitivity reaction. A large percentage of both the adult and pediatric population is in need of early diagnostics of these pathologies of the immune system. Considering the diversity of antibodies produced in allergic and autoimmune disease and the difficulties accompanying clinical diagnosing, molecular diagnostics of these pathological processes should be carried out in several stages, including screening and confirmatory studies. In this review, we summarize the available data on the molecular diagnostics and therapy of allergic and autoimmune diseases and discuss the basic similarities and differences in the mechanisms of their development.  相似文献   

9.
The prevalence of autoimmune diseases is on the rise globally. Currently, autoimmunity presents in over 100 different forms and affects around 9% of the world’s population. Current treatments available for autoimmune diseases are inadequate, expensive, and tend to focus on symptom management rather than cure. Clinical trials have shown that live helminthic therapy can decrease chronic inflammation associated with inflammatory bowel disease and other gastrointestinal autoimmune inflammatory conditions. As an alternative and better controlled approach to live infection, we have identified and characterized two peptides, Acan1 and Nak1, from the excretory/secretory component of parasitic hookworms for their therapeutic activity on experimental colitis. We synthesized Acan1 and Nak1 peptides from the Ancylostoma caninum and Necator americanus hookworms and assessed their structures and protective properties in human cell–based assays and in a mouse model of acute colitis. Acan1 and Nak1 displayed anticolitic properties via significantly reducing weight loss and colon atrophy, edema, ulceration, and necrosis in 2,4,6-trinitrobenzene sulfonic acid–exposed mice. These hookworm peptides prevented mucosal loss of goblet cells and preserved intestinal architecture. Acan1 upregulated genes responsible for the repair and restitution of ulcerated epithelium, whereas Nak1 downregulated genes responsible for epithelial cell migration and apoptotic cell signaling within the colon. These peptides were nontoxic and displayed key immunomodulatory functions in human peripheral blood mononuclear cells by suppressing CD4+ T cell proliferation and inhibiting IL-2 and TNF production. We conclude that Acan1 and Nak1 warrant further development as therapeutics for the treatment of autoimmunity, particularly gastrointestinal inflammatory conditions.  相似文献   

10.
Autoimmune diseases can be reduced or even prevented if proinflammatory immune responses are appropriately down-regulated. Receptors (such as CTLA-4), cytokines (such as TGF-beta), and specialized cells (such as CD4+CD25+ T regulatory cells) work together to keep immune responses in check. T cell Ig mucin (Tim) family proteins are key regulators of inflammation, providing an inhibitory signal that dampens proinflammatory responses and thereby reducing autoimmune and allergic responses. We show in this study that reducing Tim-3 signaling during the innate immune response to viral infection in BALB/c mice reduces CD80 costimulatory molecule expression on mast cells and macrophages and reduces innate CTLA-4 levels in CD4+ T cells, resulting in decreased T regulatory cell populations and increased inflammatory heart disease. These results indicate that regulation of inflammation in the heart begins during innate immunity and that Tim-3 signaling on cells of the innate immune system critically influences regulation of the adaptive immune response.  相似文献   

11.
The epidemiology of autoimmune diseases and helminth infections led to suggestions that helminths could improve inflammatory conditions, which was then tested using animal models. This has translated to clinical investigations aimed at the safe and controlled reintroduction of helminthic exposure to patients suffering from autoimmune diseases (so-called 'helminthic therapy') in an effort to mitigate the inflammatory response. In this review, we summarize the results of recent clinical trials of helminthic therapy, with particular attention to mechanisms of action. Whereas previous reviews have emphasized immune regulatory mechanisms activated by helminths, we propose that enhancement of mucosal barrier function may have an equally important role in improving conditions of inflammatory bowel diseases.  相似文献   

12.
In the past decade, the availability of genetically modified animals has enabled the discovery of interesting roles for phosphatidylinositol 3‐kinase‐γ (PI3Kγ) and ‐δ (PI3Kδ) in different cell types orchestrating innate and adaptive immune responses. Therefore, these PI3K isoforms appear to be attractive drug targets for the treatment of diseases caused by unrestrained immune reactions. Currently, pharmacological targeting of PI3Kγ and/or PI3Kδ represents one of the most promising challenges for companies interested in the development of novel safe treatments for inflammatory diseases. In this review we provide a general outline of PI3Kγ‐ and PI3Kδ‐specific functions in distinct subsets of inflammatory cells. We also discuss the therapeutic impact of novel compounds targeting PI3Kγ, PI3Kδ or both, in mouse models of autoimmune disorders (systemic lupus erythematosus (SLE) and rheumatoid arthritis), respiratory diseases (allergic asthma and chronic obstructive pulmonary disease) and cardiovascular dysfunctions (atherosclerosis and myocardial infarction).  相似文献   

13.
Li J  Pan HF  Cen H  Tian J  Ma Y  Tao JH  Ye DQ 《Molecular biology reports》2011,38(6):4077-4081
Interleukin-21(IL-21) is the most recently discovered member of the type-I cytokine family. Structurally, IL-21 shows homology to IL-2, 4, and 15 proteins. It has a variety of effects on the immune system, including B cell activation, plasma cell differentiation, and immunoglobulin production. Many previous studies have identified that IL-21 was associated with different autoimmune and inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. In addition, recent work has explored the role of IL-21 in systemic lupus erythematosus (SLE). Elevated expression of IL-21 was found in the sera of patients and mice with SLE. Moreover, association of IL-21 and IL-21R polymorphisms with susceptibility to SLE have been reported. All these findings suggest that IL-21 may have promise as a potential therapeutic target for SLE. In this review, we will discuss the biological features of IL-21, the IL-21 signaling and its potential role in SLE.  相似文献   

14.
Parasitic worms survive within their immunocompetent hosts by modulating their immune system and by inhibiting inflammatory responses directed against the parasites. This immunomodulation has a spill over effect and also inhibits inflammatory responses originating from other causes. For this reason, persons who are infected with certain species of worms show a lower rate of allergic diseases as compared to persons who are free of parasites. In the same line, studies in mouse models revealed that many inflammatory diseases can be treated by worm infections. This effect is among others owing to specific proteins that are released by the worms. Such secreted immunomodulators, shaped by co‐evolution between parasites and their hosts, could become lead compounds for the development of new therapies against allergic and inflammatory diseases.  相似文献   

15.
Common dietary components including vitamins A and D, omega-3 and probiotics are now widely accepted to be essential to protect against many diseases with an inflammatory nature. On the other hand, high-fat diets are documented to exert multiple deleterious effects, including fatty liver diseases. Here we discuss the effect of dietary components on regulatory T cell (Treg) homeostasis, a central element of the immune system to prevent chronic tissue inflammation. Accordingly, evidence on the impact of dietary components on diseases in which Tregs play an influential role will be discussed. We will review chronic tissue-specific autoimmune and inflammatory conditions such as inflammatory bowel disease, type 1 diabetes mellitus, multiple sclerosis, rheumatoid arthritis and allergies among chronic diseases where dietary factors could have a direct influence via modulation of Tregs homeostasis and functions.  相似文献   

16.
Ulcerative colitis (UC) is a form of inflammatory bowel disease (IBD) characterized by damage of large bowel mucosa and frequent extra-intestinal autoimmune comorbidities. The role played in IBD pathogenesis by molecular chaperones known to interact with components of the immune system involved in inflammation is unclear. We previously demonstrated that mucosal Hsp60 decreases in UC patients treated with conventional therapies (mesalazine, probiotics), suggesting that this chaperonin could be a reliable biomarker useful for monitoring response to treatment, and that it might play a role in pathogenesis. In the present work we investigated three other heat shock protein/molecular chaperones: Hsp10, Hsp70, and Hsp90. We found that the levels of these proteins are increased in UC patients at the time of diagnosis and decrease after therapy, supporting the notion that these proteins deserve attention in the study of the mechanisms that promote the development and maintenance of IBD, and as biomarkers of this disease (e.g., to monitor response to treatment at the histological level).  相似文献   

17.
Pediatric Crohn''s disease is a chronic auto inflammatory bowel disorder affecting children under the age of 17 years. A putative etiopathogenesis of Crohn''s disease (CD) is associated with disregulation of immune response to antigens commonly present in the gut microenvironment. Heat shock proteins (HSP) have been identified as ubiquitous antigens with the ability to modulate inflammatory responses associated with several autoimmune diseases. The present study tested the contribution of immune responses to HSP in the amplification of autoimmune inflammation in chronically inflamed mucosa of pediatric CD patients. Colonic biopsies obtained from normal and CD mucosa were stimulated with pairs of Pan HLA-DR binder HSP60-derived peptides (human/bacterial homologues). The modulation of RNA and protein levels of induced proinflammatory cytokines were measured. We identified two epitopes capable of sustaining proinflammatory responses, specifically TNF〈 and IFN© induction, in the inflamed intestinal mucosa in CD patients. The responses correlated positively with clinical and histological measurements of disease activity, thus suggesting a contribution of immune responses to HSP in pediatric CD site-specific mucosal inflammation.  相似文献   

18.
Chronic inflammatory lung diseases represent a group of severe diseases with increasing prevalence as well as epidemiological importance. Inflammatory lung diseases could result from allergic or infectious genesis. There is growing evidence that the immune and nervous system are closely related not only in physiological but also in pathological reactions in the lung. Extensive communications between neurons and immune cells are responsible for the magnitude of airway inflammation and the development of airway hyperreactivity, a consequence of neuronal dysregulation. Neurotrophins are molecules regulating and controlling this crosstalk between the immune and peripheral nervous system (PNS) during inflammatory lung diseases. They are constitutively expressed by resident lung cells and produced in increasing quantities by immune cells invading the airways under inflammatory conditions. They act as activation, differentiation and survival factors for cells of both the immune and nervous system. This article will review the most recent data of neurotrophin signaling in the normal and inflamed lung and as yet unexplored, roles of neurotrophins in the complex communication within the neuroimmune network.  相似文献   

19.
Cognate interactions between immune effector cells and antigen-presenting cells (APCs) govern immune responses. Specific signals occur between the T-cell receptor peptide and APCs and nonspecific signals between pairs of costimulatory molecules. Costimulation signals are required for full T-cell activation and are assumed to regulate T-cell responses as well as other aspects of the immune system. As new discoveries are made, it is becoming clear how important these costimulation interactions are for immune responses. Costimulation requirements for T-cell regulation have been extensively studied as a way to control many autoimmune diseases and downregulate inflammatory reactions. The CD28:B7 and the CD40:CD40L families of molecules are considered to be critical costimulatory molecules and have been studied extensively. Blocking the interaction between these molecules results in a state of immune unresponsiveness termed 'anergy'. Several different strategies for blockade of these interactions are explored including monoclonal antibodies (mAbs), Fab fragments, chimeric, and/or fusion proteins. We developed novel, immune-specific approaches that interfere with these interactions. Using experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis mediated by central nervous system (CNS)-specific T-cells, we developed a multi-targeted approach that utilizes peptides for blockade of costimulatory molecules. We designed blocking peptide mimics that retain the functional binding area of the parent protein while reducing the overall size and are thus capable of blocking signal transduction. In this paper, we review the role of costimulatory molecules in autoimmune diseases, two of the most well-studied costimulatory pathways (CD28/CTLA-4:B7 and CD40:CD40L), and the advantages of peptidomimetic approaches. We present data showing the ability of peptide mimics of costimulatory molecules to suppress autoimmune disease and propose a mechanism for disease suppression.  相似文献   

20.
Despite the fact that target antigens and the genetic basis of several autoimmune diseases are now better understood, the initial events leading to a loss of tolerance towards self-components remain unknown. One of the most attractive explanations for autoimmune phenomena involves various infections as possible natural events capable of initiating the process in genetically predisposed individuals. The most accepted explanation of how infection causes autoimmunity is based on the concept of “molecular mimicry” (similarity between the epitopes of an autoantigen and the epitopes in the environmental antigen). Infectious stimuli may also participate in the development of autoimmunity by inducing an increased expression of stress proteins (hsp), chaperones and transplantation antigens, which leads to abnormal processing and presentation of self antigens. Superantigens are considered to be one of the most effective bacterial components to induce inflammatory reactions and to take part in the development and course of autoimmune mechanisms. It has long been known that defects in the host defense mechanism render the individual susceptible to infections caused by certain microorganisms. Impaired exclusion of microbial antigens can lead to chronic immunological activation which can affect the tolerance to self components. Defects in certain components of the immune system are associated with a higher risk of a development of autoimmune disease. The use of animal models for the studies of human diseases with immunological pathogenesis has provided new insights into the influence of immunoregulatory factors and the lymphocyte subsets involved in the development of disease. One of the most striking conclusion arising from work with, genetically engineered immunodeficient mouse models is the existence of a high level of redundancy of the components of the immune system. However, when genes encoding molecules involved in T cell immunoregulatory functions are deleted, spontaneous chronic inflammation of the gut mucosa (similar to human inflammatory bowel disease) develops. Surprisingly, when such immunocompromised animals were placed into germfree environment, intestinal inflammation did not develop. Impairment of the mucosal immune response to the normal bacterial flora has been proposed to play a crucial role in the pathogenesis of chronic intestinal inflammation. The use of immunodeficient models colonized with defined microflora for the analysis of immune reactivity will shed light on the mode of action of different immunologically important molecules responsible for the delicate balance between luminal commensals, nonspecific and specific components of the mucosal immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号