首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Toxoplasma gondii genome project has revealed two putative isoforms (TgPGM-I and TgPGM-II) of α-phosphoglucomutase (EC 5.4.2.2). We obtained recombinant proteins of these isoforms from the Beverley strain of T. gondii and characterized their properties, particularly the kinetic properties of these isoforms. The specific activities of TgPGM-I and TgPGM-II for α-d-glucose 1-phosphate were 338 ± 9 and 84 ± 6 μmol/min/mg protein, respectively, at 37 °C under optimal conditions. The Kcat and Km values of TgPGM-I were 398 ± 11/s and 0.19 ± 0.03 mM and those for TgPGM-II were 93 ± 7/s and 3.53 ± 0.91 mM, respectively, for α-d-glucose 1-phosphate. Magnesium ions were the most effective divalent cations for both the enzyme activities. The maximum activities of both the enzymes were obtained in the presence of more than 0.2 mM α-d-glucose 1,6-bisphosphate. Although both enzymes were attached to the α-phosphohexomutase superfamily, amino acid sequence homology between TgPGM-I and TgPGM-II showed very low overall identity (25%). No α-phosphomannomutase (EC 5.4.2.8) activity was detected for either enzyme. The data indicated that TgPGM-I, but not TgPGM-II, may play an important role in α-d-glucose 6-phosphate production.  相似文献   

3.
We have recently demonstrated that fibrillin-1 assemblies regulate the fate of skeletal stem cells (aka, mesenchymal stem cells [MSCs]) by modulating TGFβ activity within the microenvironment of adult bone marrow niches. Since MSCs can also influence hematopoietic stem cell (HSC) activities, here we investigated adult hematopoiesis in mice with Cre-mediated inactivation of the fibrillin-1 (Fbn1) gene in the mesenchyme of the forming limbs (Fbn1Prx1 / mice). Analyses of 3-month-old Fbn1Prx1 / mice revealed a statistically significant increase of circulating red blood cells, which a differentiation assay correlated with augmented erythropoiesis. This finding, together with evidence of fibrillin-1 deposition in erythroblastic niches, supported the notion that this extracellular matrix protein normally restricts differentiation of erythroid progenitors. Whereas flow cytometry measurements identified a decreased HSC frequency in mutant relative to wild type mice, no appreciable differences were noted with regard to the relative abundance and differentiation potential of myeloid progenitor cells. Together these findings implied that fibrillin-1 normally promotes HSC expansion but does not influence cell lineage commitment. Since local TGFβ hyperactivity has been associated with abnormal osteogenesis in Fbn1Prx1 / mice, 1-month-old mutant and wild type animals were systemically treated for 8 weeks with either a pan-TGF-β-neutralizing antibody or an antibody of the same IgG1 isotype. The distinct outcomes of these pharmacological interventions strongly suggest that fibrillin-1 differentially modulates TGFβ activity in HSC vs. erythroid niches.  相似文献   

4.
Conditional deletion of Pkd1 in osteoblasts using either Osteocalcin(Oc)-Cre or Dmp1-Cre results in defective osteoblast-mediated postnatal bone formation and osteopenia. Pkd1 is also expressed in undifferentiated mesenchyme that gives rise to the osteoblast lineage. To examine the effects of Pkd1 on prenatal osteoblast development, we crossed Pkd1 flox/flox and Col1a1(3.6)-Cre mice, which has been used to achieve selective inactivation of Pkd1 earlier in the osteoblast lineage. Control Pkd1 flox/flox and Pkd1 flox/+, heterozygous Col1a1(3.6)-Cre;Pkd1 flox/+ and Pkd1 flox/null, and homozygous Col1a1(3.6)-Cre;Pkd1 flox/flox and Col1a1(3.6)-Cre;Pkd1 flox/null mice were analyzed at ages ranging from E14.5 to 8-weeks-old. Newborn Col1a1(3.6)-Cre;Pkd1 flox/null mice exhibited defective skeletogenesis in association with a greater reduction in Pkd1 expression in bone. Conditional Col1a1(3.6)-Cre;Pkd1 flox/+ and Col1a1(3.6)-Cre;Pkd1 flox/flox mice displayed a gene dose-dependent decrease in bone formation and increase in marrow fat at 6 weeks of age. Bone marrow stromal cell and primary osteoblast cultures from homozygous Col1a1(3.6)-Cre;Pkd1 flox/flox mice showed increased proliferation, impaired osteoblast development and enhanced adipogenesis ex vivo. Unexpectedly, we found evidence for Col1a1(3.6)-Cre mediated deletion of Pkd1 in extraskeletal tissues in Col1a1(3.6)-Cre;Pkd1 flox/flox mice. Deletion of Pkd1 in mesenchymal precursors resulted in pancreatic and renal, but not hepatic, cyst formation. The non-lethality of Col1a1(3.6)-Cre;Pkd1 flox/flox mice establishes a new model to study abnormalities in bone development and cyst formation in pancreas and kidney caused by Pkd1 gene inactivation.  相似文献   

5.
The biogeochemical cycles of nitrogen (N) and base cations (BCs), (i.e., K+, Na+, Ca2+, and Mg2+), play critical roles in plant nutrition and ecosystem function. Empirical correlations between large experimental N fertilizer additions to forest ecosystems and increased BCs loss in stream water are well demonstrated, but the mechanisms driving this coupling remain poorly understood. We hypothesized that protons generated through N transformation (PPRN)—quantified as the balance of NH4+ (H+ source) and NO3 (H+ sink) in precipitation versus the stream output will impact BCs loss in acid-sensitive ecosystems. To test this hypothesis, we monitored precipitation input and stream export of inorganic N and BCs for three years in an acid-sensitive forested watershed in a granite area of subtropical China. We found the precipitation input of inorganic N (17.71 kg N ha−1 year−1 with 54% as NH4+–N) was considerably higher than stream exported inorganic N (5.99 kg N ha−1 year−1 with 83% as NO3–N), making the watershed a net N sink. The stream export of BCs (151, 1518, 851, and 252 mol ha−1 year−1 for K+, Na+, Ca2+, and Mg2+, respectively) was positively correlated (r = 0.80, 0.90, 0.84, and 0.84 for K+, Na+, Ca2+, and Mg2+ on a monthly scale, respectively, P < 0.001, n = 36) with PPRN (389 mol ha−1 year−1) over the three years, suggesting that PPRN drives loss of BCs in the acid-sensitive ecosystem. A global meta-analysis of 15 watershed studies from non-calcareous ecosystems further supports this hypothesis by showing a similarly strong correlation between ∑BCs output and PPRN (r = 0.89, P < 0.001, n = 15), in spite of the pronounced differences in environmental settings. Collectively, our results suggest that N transformations rather than anions (NO3 and/or SO42−) leaching specifically, are an important mediator of BCs loss in acid-senstive ecosystems. Our study provides the first definitive evidence that the chronic N deposition and subsequent transformation within the watershed drive stream export of BCs through proton production in acid-sensitive ecosystems, irrespective of their current relatively high N retention. Our findings suggest the N-transformation-based proton production can be used as an indicator of watershed outflow quality in the acid-sensitive ecosystems.  相似文献   

6.
Huntington's disease (HD) is caused by an expansion of CAG repeats in the HTT gene, leading to expression of mutant huntingtin (mHTT) and selective striatal neuronal loss, frequently associated with mitochondrial dysfunction and decreased support of brain-derived neurotrophic factor (BDNF). New neurons derived from the subventricular zone (SVZ) are apparently not able to rescue HD pathological features. Thus, we analyzed proliferation, migration and differentiation of adult SVZ-derived neural stem/progenitor cells (NSPC) from mild (6 month-old (mo)) and late (10 mo) symptomatic HD YAC128 mice expressing full-length (FL)-mHTT versus age-matched wild-type (WT) mice. SVZ cells derived from 6 mo YAC128 mice exhibited higher migratory capacity and a higher number of MAP2 + and synaptophysin + cells, compared to WT cells; MAP2 labeling was enhanced after exposure to BDNF. However, BDNF-evoked neuronal differentiation was not observed in 10 mo YAC128 SVZ-derived cells. Interestingly, 6 mo YAC128 SVZ-derived cells showed increased intracellular Ca2+ levels in response to KCl, which was potentiated by BDNF, evidencing the presence of differentiated neurons. In contrast, KCl depolarization-induced intracellular Ca2+ increase in 10 mo YAC128 SVZ-derived cells was shown to be increased only in BDNF-treated YAC128 SVZ-derived cells, suggestive of decreased differentiation capacity. In addition, BDNF-untreated NSPC from 10 mo YAC128 mice exhibited lower mitochondrial membrane potential and increased mitochondrial Ca2+ accumulation, in relation with NSPC from 6 mo YAC128 mice. Data evidence age-dependent reduced migration and decreased acquisition of a neuronal phenotype, accompanied by decreased mitochondrial membrane potential in SVZ-derived cells from YAC128 mice through HD symptomatic phases.  相似文献   

7.
Angiogenesis is a highly regulated physiological process in animals. Angiopoietin-1 (Angpt1) induces the signaling pathways related to vessel maturation in late phase of angiogenesis, which recruits pericyte supplements to make compact interaction with vessel tubes. There are only few data showing Angpt1 functions in fish. By using degenerate primers, partial sequence (812 bp) of Angpt1 was cloned from Anguilla japonica, and deduced amino acids showed 80% similarity to those of zebrafish. Physiological functions of cloned eel Angpt1 were studied by in vitro and in vivo manipulations with gas glands (rete mirabile) taken as the tested target tissues. RT-PCR and immunofluorescent staining techniques were performed to examine the expression patterns of Angpt1 as well as VEGF-Flk. Experimental data showed that, in vitro, bFGF, PPAR beta agonist, and estradiol affected Angpt1 expression; while cobalt ions, a VEGF expression-inducer, did not affect Angpt1 expression. In vivo, expression levels of Angpt1 increased with body growth. Furthermore, Angpt1 expressions increased significantly in the late stage of gas glands in the stimulated eel. Successive expression patterns on VEGF-Flk, and Angpt1 on different development stages of gas glands were observed. Our results suggest that the original function of angiopoietin-1 on angiogenesis is conserved during evolution.  相似文献   

8.
Background aimsInterleukin (IL)-15 and fms-like tyrosine kinase-3 (FLT-3) are crucial factors for the development of human and murine natural killer (NK) cells. Previously, we have demonstrated significant ex vivo expansion and activation of unrelated cord blood (UCB) NK cells with an antibody/cytokine cocktail consisting of anti-CD3 + IL-2 + IL-12 + IL-7 and anti-CD3 + IL-2 + IL-12 + IL-18.MethodsIn the current experiments, we investigated the effects of short-term culture with anti-CD3 + IL-2 + FLT-3 + IL-15 on cord blood (CB) NK cell and NK-cell subset expansion and function. CB mononuclear cells were cultured for 48 h in AIM-V media or AIM-V + IL-2 (5 ng/mL) + anti-CD3 (50 ng/mL) + FLT-3 (50 ng/mL) ± escalating doses of IL-15 (1, 10 or 100 ng/mL). Flow cytometric analysis was performed using various fluorescent-conjugated monoclonal antibodies. In vitro cytotoxicity was determined with a standard europium assay against K562 and Daudi cells.ResultsThere was a 4.8-fold significant increase in NK-cell population (CD3?/16+/56+; P < 0.03), 21-fold significant increase in CD3?/56+/158a+ (KIR2DL1/S1; P < 0.002), 46-fold significant increase in CD3?/56+/158b+ (KIR2DL1/S2; P < 0.002) and 11.5-fold significant increase in CD3?/56+/NKB1+ (KIR3DL1; P < 0.01). We also noted a significant increase in both NK and lymphokine-activated killer (LAK) cytotoxicity with IL-2 + anti-CD3 + FLT-3 + IL-15 (100 ng/mL) compared with IL-2 + anti-CD3 + FLT-3 and media alone against K562 (P < 0.01) and Daudi (P < 0.001), respectively.ConclusionsWe have demonstrated a significant increase in UCB NK cells and NK cells expressing a variety of killer immunoglobulin-like receptor (KIR) receptors after short-term culture with anti-CD3, IL-2, FLT-3 and IL-15. Furthermore, there was a significant increase in in vitro NK/LAK cell cytotoxicity.  相似文献   

9.
Renal ubiquitin C-terminal hydrolase L1 (UCHL1) is upregulated in a subset of human glomerulopathies, including focal segmental glomerulosclerosis (FSGS), where it may serve to promote ubiquitin pools for degradation of cytotoxic proteins. In the present study, we tested whether UCHL1 is expressed in podocytes of a mouse model of ACTN4-associated FSGS. Podocyte UCHL1 protein was detected in glomeruli of K256E-ACTN4pod +/UCHL1+/+ mice. UCHL1+/− mice were intercrossed with K256E-ACTN4pod + mice and monitored for features of glomerular disease. 10-week-old K256E-ACTN4pod +/UCHL1−/− mice exhibited significantly ameliorated albuminuria, glomerulosclerosis, tubular pathology and blood pressure. Interestingly, while UCHL1 deletion diminished both tubular and glomerular apoptosis, WT1-positive nuclei were unchanged. Finally, UCHL1 levels correlated positively with poly-ubiquitinated proteins but negatively with K256E-α-actinin-4 levels, implying reduced K256E-α-actinin-4 proteolysis in the absence of UCHL1. Our data suggest that UCHL1 upregulation in ACTN4-associated FSGS fuels the proteasome and that UCHL1 deletion may impair proteolysis and thereby preserve K256E/wt-α-actinin-4 heterodimers, maintaining podocyte cytoskeletal integrity and protecting the glomerular filtration barrier.  相似文献   

10.
A pot experiment was carried out with tomato (Lycopersicon esculentum Mill.) cv. “Target F1” in a mixture of peat, perlite, and sand (1:1:1) to investigate the effects of supplementary calcium sulphate on plants grown at high NaCl concentration (75 mM). The treatments were: (i) control (C), nutrient solution alone; (ii) salt treatment (C + S), 75 mM NaCl; (iii) salt plus calcium treatment 1 (C + S + Ca1), 75 mM NaCl plus additional mixture of 2.5 mM CaSO4 in nutrient solution; (iv) salt plus calcium treatment 2 (C + S + Ca2), 75 mM NaCl plus additional mixture of 5 mM CaSO4 in nutrient solution. The plants grown under salt stress produced low dry matter, fruit weight, and relative water content than those grown in standard nutrient solution. Supplemental calcium sulphate added to nutrient solution containing salt significantly improved growth and physiological variables affected by salt stress (e.g. plant growth, fruit yield, and membrane permeability) and also increased leaf K+, Ca2+, and N in tomato plants. The effects of supplemental CaSO4 in maintaining membrane permeability, increasing concentrations of Ca2+, N, and K+ and reducing concentration of Na+ (because of cation competition in root zone) in leaves could offer an economical and simple solution to tomato crop production problems caused by high salinity.  相似文献   

11.
Mice lacking the gene for suppressor of cytokine signaling 1 (SOCS1) show defective homeostasis of T lymphocytes due to accumulation of CD8+ T cells, resulting at least partly from dysregulated IL-15 signaling. IL-15 alone does not stimulate proliferation of naïve CD8 T cells, but can synergize with IL-21 to induce proliferation, suggesting a potential role for IL-21 in the defective homeostasis of CD8+ T lymphocytes in SOCS1−/− mice. Since IL-21 strongly induced SOCS1 mRNA in CD8+ T cells, we investigated whether SOCS1 regulates their response to IL-21. CD8+ T cells isolated from SOCS1-deficient mice proliferated vigorously in response to IL-21 + IL-15. In CD8+ T lymphocytes expressing transgenic TCR, IL-21 + IL-7 provided a stronger stimulus to naïve cells whereas IL-15 + IL-21 potently stimulated memory cells. Compared to truly naïve or memory cells, SOCS1−/− H-Y TCR+ CD8+ T cells displayed CD44loLy6ChiCD122intCD127lo partial memory phenotype and exhibited stronger response to IL-15 + IL-21 than truly naïve cells. In SOCS1−/− CD8+ T cells, IL-21 caused greater reduction in IL-15 threshold for activation in a dose-dependent manner. SOCS1 deficiency did not modulate IL-21Rα expression or sensitivity to IL-21, but delayed the loss of IL-21-induced phospho-STAT3 signal. These results show that SOCS1 is a critical regulator of IL-21 signaling in CD8+ T cells, and support the notion that sustained IL-21 signaling might also contribute to the aberrant T cell homeostasis in SOCS1-deficient mice.  相似文献   

12.
Angiotensin I-converting enzyme (ACE), a common element of renin–angiotensin system (RAS) and kallikrein–kinin system (KKS), is involved in myelopoiesis modulation, mainly by cleaving the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). Based on this finding and in our results showing B1 and B2 kinin receptors expression in murine bone marrow (BM) cells, we evaluated the ACE influence on myelopoiesis of kinin B1 receptor knockout mice (B1KO) using long-term bone marrow cultures (LTBMCs). Captopril and AcSDKP were used as controls. Enhanced ACE activity, expressed by non-hematopoietic cells (Ter-199? and CD45?), was observed in B1KO LTBMCs when compared to wild-type (WT) cells. ACE hyperfunction in B1KO cells was maintained when LTBMCs from B1KO mice were treated with captopril (1.0 μM) or AcSDKP (1.0 nM). Although no alterations were observed in ACE mRNA and protein levels under these culture conditions, 3.0 nM of AcSDKP increased ACE mRNA levels in WT LTBMCs. No alteration in the number of GM-CFC was seen in B1KO mice compared to WT animals, even when the former were treated with AcSDKP (10 μg/kg) or captopril (100 mg/kg) for 4 consecutive days. Hematological data also revealed no differences between WT and B1KO mice under basal conditions. When the animals received 4 doses of lipopolysaccharide (LPS), a decreased number of blood cells was detected in B1KO mice in relation to WT. We also found a decreased percentage of Gr1+/Mac-1+, Ter119+, B220+, CD3+, and Lin?Sca1+c-Kit+ (LSK) cells in the BM of B1KO mice compared to WT animals. Low AcSDKP levels were observed in BM cultures from B1KO in comparison to WT cultures. We conclude that ACE hyperfunction in B1KO mice resulted in faster hydrolysis of AcSDKP peptide, which in turn decreased in BM tissues allowing HSC to enter the S stage of the cell cycle.  相似文献   

13.
Visceral leishmaniasis (VL) represents the second most challenging infectious disease worldwide, leading to nearly 500,000 new cases and 60,000 deaths annually. Ninety per cent of VL cases occur in five countries namely Bangladesh, India, Nepal, Sudan and Brazil. No licensed vaccine is available till date against any form of leishmaniasis. High toxicity and increasing resistance to the current chemotherapeutic regimens have further complicated the situation in VL endemic regions of the world. To combat this situation, immunochemotherapy can provide a solution. In the present study, an attempt has been made to assess the in vivo antileishmanial efficacy of chemotherapy, immunotherapy and immunochemotherapy with the use of a first generation antigen Killed Leishmania donovani (KLD) along with a standard drug sodium stibogluconate (SSG) and a newly tested antileishmanial cisplatin. Inbred BALB/c mice were infected with 107 promastigotes/0.1 ml of Leishmania donovani. A month after infection, these animals were given specific immunotherapy (KLD/KLD + MPL-A) or chemotherapy (SSG/cisplatin) or immunochemotherapy (SSG + KLD/SSG + KLD + MPL-A/cisplatin + KLD/cisplatin + KLD + MPL-A). Animals were sacrificed on 1, 15 and 30th day post treatment. The efficacy of these combinations was assessed in terms of parasite load and by immunological investigations. Infected mice and normal mice served as controls. Results showed that combination of drug and KLD significantly reduced the parasite burden, enhanced the DTH (Delayed Type Hypersensitivity) responses, showed increased levels of IgG2a and decreased levels of IgG1 as compared to mice given chemotherapy or immunotherapy alone. Further maximum protection was provided by SSG + KLD + MPL-A and it was most effective as depicted by 98.5% reduction in parasite load, a potent increase in IFN-γ levels and a significant decrease in IL-10 and IL-4 levels thus skewing the immune response towards Th1 type. Hence, immunochemotherapy is more effective in control of VL in comparison to chemotherapy or immunotherapy.  相似文献   

14.
Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6 weeks. Following 2 weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100 mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca2 + regulatory proteins sarco(endo)plasmic reticulum Ca2 +-ATPase, Na+Ca2 + exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH2-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na+Ca2 + exchanger, cardiac contractile and intracellular Ca2 + defects, cardiac fibrosis, overt O2? production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling.  相似文献   

15.
Light activation of photosensitizing dyes in presence of molecular oxygen generates highly cytotoxic reactive oxygen species leading to cell inactivation. Nucleic acids are molecular targets of this photodynamic action but not considered the main cause of cell death. The in vivo effect of the photodynamic process on the intracellular nucleic acid content of Escherichia coli and Staphylococcus warneri was evaluated herein.Two cationic porphyrins (Tetra-Py+-Me and Tri-Py+-Me-PF) were used to photoinactivate E. coli (5.0 μM; 108 cells mL?1) and S. warneri (0.5 μM; 108 cells mL?1) upon white light irradiation at 4.0 mW cm?2 for 270 min and 40 min, respectively. Total nucleic acids were extracted from photosensitized bacteria after different times of irradiation and analyzed by agarose gel electrophoresis. The double-stranded DNA was quantified by fluorimetry and the porphyrin binding to bacteria was determined by spectrofluorimetry.E. coli was completely photoinactivated with both porphyrins (5.0 μM), whereas S. warneri was only completely inactivated by Tri-Py+-Me-PF (0.5 μM). The hierarchy of nucleic acid changes in E. coli was in the order: 23S rRNA > 16S rRNA > genomic DNA. The nucleic acids of S. warneri were extensively reduced after 5 min with Tri-Py+-Me-PF but almost unchanged with Tetra-Py+-Me after 40 min of irradiation. The amount of Tri-Py+-Me-PF bound to E. coli after washing the cells is higher than Tetra-Py+-Me and the opposite was observed for S. warneri. The binding capacity of the photosensitizers is not directly related to the PDI efficiency or nucleic acid reduction and this reduction occurs in parallel with the decrease of surviving cells.  相似文献   

16.
Background aimsPlerixafor was recently approved for use in combination with granulocyte–colony-stimulating factor (G-CSF) for hematopoietic progenitor cell (HPC) collection by apheresis in adults with multiple myeloma (MM) or non-Hodgkin lymphoma (NHL). However, its efficacy in pediatric patients is not well-studied; thus, we report on our institutional experience with this population. Methods. A retrospective observational analysis was performed using both stem cell-processing laboratory information as well as apheresis charts and medical records on all pediatric patients who received plerixafor as part of the mobilization regimen between December 2006 and December 2010. The primary outcome was collection yield. Secondary outcomes included the ability to undergo autologous hematopoietic stem cell transplantation (auto-HSCT) and engraftment status. Results. Eighteen HPC collections by apheresis representing seven mobilization courses were performed on five pediatric patients with poor mobilization status (three males, two females; median age 14 years). Median pre-harvest peripheral blood CD34+ cell (PB CD34+) count was 6.88/μL. A strong correlation between pre-harvest PB CD34+ count and collection yield was observed. Median total collection yield was 2.26 × 106 CD34+ cells/kg. Four patients achieved a minimum collection of 2 × 106 CD34+ cells/kg. Three patients underwent auto-HSCT with a median neutrophil and platelet engraftment of 12 and 34 days, respectively. No major adverse events with plerixafor administration or apheresis collections were reported. Conclusions. Plerixafor in combination with G-CSF is a safe and potentially helpful mobilization agent in poor mobilizers. Further studies should be done to evaluate the true efficacy of plerixafor in the pediatric population.  相似文献   

17.
《Process Biochemistry》2014,49(12):2114-2121
The codon-optimized carbonic anhydrase gene of Persephonella marina EX-H1 (PMCA) was expressed and characterized. The gene with the signal peptide removed, PMCA(sp−), resulted in the production of approximately five times more purified protein than from the intact gene PMCA using an Escherichia coli expression system. PMCA(sp−) is formed as homo-dimer complex. PMCA(sp−) has a wide pH tolerance (optimum pH 7.5) and a high thermostability even at 100 °C (88 min of thermal deactivation half-life). The melting temperature for PMCA(sp−) was 84.5 °C. The apparent kcat and Km values for CO2 hydration were 3.2 × 105 s−1 and 10.8 mM. The activity of the PMCA(sp−) enzyme was enhanced by Zn2+, Co2+, and Mg2+, but was strongly inhibited by Cu2+, Fe3+, Al3+, Pb2+, Ag+, and Hg2+. PMCA(sp−) readily catalyzed the hydration of CO2, precipitating CaCO3 as calcite in the presence of Ca2+.  相似文献   

18.
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2 +/Mn2 + homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2 + concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2 + confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2 +. The use of Pmr1p mutants either defective for Ca2 + or Mn2 + transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2 + requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2 + inside the Golgi lumen when Pmr1p exclusively transports Ca2 +. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2 + sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2 +/Ca2 + transport.  相似文献   

19.
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2 + signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2 + entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP–BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20 ng/ml, 48 h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10 μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca2 + (EGTA; 1 mM) or intracellular Ca2 + (BAPTA; 5 μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca2 + influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca2 + and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.  相似文献   

20.
Background aimsA phase I trial examined the ability of immunotherapy to mobilize progenitor and activated T cells.MethodsInterleukin (IL)-2 was administered subcutaneously for 11 days, with granulocyte (G)-colony-stimulating factor (CSF) (5 mcg/kg/day) and granulocyte–macrophage (GM)-CSF (7.5 mcg/kg/day) added for the last 5 days. Leukapheresis was initiated on day 11. Thirteen patients were treated (myeloma n = 11, non-Hodgkin's lymphoma n = 2).ResultsToxicities were minimal. IL-2 was stopped in two patients because of capillary leak (n = 1) and diarrhea (n = 1). Each patient required 2.5 leukaphereses (median; range 1–3) to collect 3.2 × 106 CD34+ cells/kg (median; range 1.9–6.6 × 106/kg). Immune mobilization increased the number of CD3+ CD8+ T cells (P = 0.002), CD56+ natural killer (NK) cells (P = 0.0001), CD8+ CD56+ T cells (P = 0.002) and CD4+ CD25+ cells (P = 0.0001) compared with cancer patients mobilized with G-CSF alone. There was increased lysis of myeloma cells after 7 days (P = 0.03) or 11 days (P = 0.02). The maximum tolerated dose of IL-2 was 1 × 106 IU/m2/day.ConclusionsImmune mobilization is well tolerated with normal subsequent marrow engraftment. As cells within the graft influence lymphocyte recovery, an increased number of functional lymphocytes may result in more rapid immune reconstitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号