首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的探讨骨髓基质干细胞诱导分化为神经元过程中miR-124和miR-128的表达变化及作用。方法采用全骨髓培养法体外分离培养获得骨髓基质干细胞,取传代培养至第3代的骨髓基质干细胞,在神经干细胞培养液及细胞因子等条件下诱导其分化为神经元,倒置显微镜下观察其形态变化,应用ABI公司的TaqManMicroRNAAssaysreal-timePCR技术,检测miR-124和miR-128在诱导分化过程中的表达。结果 miR-124分化后神经元的表达是未分化BMSCs的0.051倍(P0.05);miR-128分化后神经元的表达是未分化BMSCs的0.070倍(P0.05)。结论 miR-124和miR-128在骨髓基质干细胞诱导分化为神经元过程中可能起重要作用。  相似文献   

3.
4.
miR-92a家族基因是由miR-25、miR-92a~1、miR-92a~2和miR-363等序列相似、结构相仿、种子区序列相同的微小RNA(microRNAs)组成,它们分别来自在进化过程中高度保守并互为旁系同源序列的miR-106b~25、miR-17~92和miR-106a~363基因簇。目前研究认为,miR-92a家族基因是一组与血管内皮细胞形成有关的miRNAs,其表达紊乱与肿瘤的发生发展密切相关。就miR-92a家族基因及其靶基因与肿瘤关系的研究进展进行综述。  相似文献   

5.
6.
Matrix metalloprotease-1 (MMP1), a collagenase and activator of the G protein-coupled protease activated receptor-1 (PAR1), is an emerging new target implicated in oncogenesis and metastasis in diverse cancers. However, the functional mouse homologue of MMP1 in cancer models has not yet been clearly defined. We report here that Mmp1a is a functional MMP1 homologue that promotes invasion and metastatic progression of mouse lung cancer and melanoma. LLC1 (Lewis lung carcinoma) and primary mouse melanoma cells harboring active BRAF express high levels of endogenous Mmp1a, which is required for invasion through collagen. Silencing of either Mmp1a or PAR1 suppressed invasive stellate growth of lung cancer cells in three-dimensional matrices. Conversely, ectopic expression of Mmp1a conferred an invasive phenotype in epithelial cells that do not express endogenous Mmp1a. Consistent with Mmp1a acting as a PAR1 agonist in an autocrine loop, inhibition or silencing of PAR1 resulted in a loss of the Mmp1a-driven invasive phenotype. Knockdown of Mmp1a on tumor cells resulted in significantly decreased tumorigenesis, invasion, and metastasis in xenograft models. Together, these data demonstrate that cancer cell-derived Mmp1a acts as a robust functional homologue of MMP1 by conferring protumorigenic and metastatic behavior to cells.  相似文献   

7.
为了利用生物信息学方法预测miR-21的靶基因及其功能,为后续研究miR-21及其靶基因在结肠癌发生中的作用机制奠定基础。研究通过miRBase获取并分析多个物种的miR-21的序列特征;应用Target Scan、Pic Tar,miRanda及miRecords 4种在线工具预测miR-21的靶基因,结合已证实的靶基因,对靶基因进行功能注释和信号通路富集分析;通过查找文献,综述miR-21的功能,结合功能注释和信号通路富集分析为进一步研究mir-21在结肠癌发生中的作用提供理论基础。  相似文献   

8.
目的探索miR-138-5p对胰腺癌细胞PANC-1生长、转移的影响及其相关机制。方法应用荧光实时定量PCR (real-time quantitative PCR, RT-PCR)检测miR-138-5p及其缺氧诱导因子1α(hypoxia inducible factor 1 alpha, HIF-1α)在PANC-1细胞中的表达。应用荧光素酶报告检测验证miR-138-5p与HIF-1α之间的生物学关系。通过体外试验研究miR-138-5p、HIF-1α在PANC-1细胞中的生物学功能,Western blot检测蛋白表达情况;CCK-8检测PANC-1细胞增殖能力;Transwell试验检测PANC-1细胞侵袭能力;划痕试验检测PANC-1细胞迁移能力。结果 miR-138-5p表达明显下调HIF-1α表达水平(P<0.01),生物信息学预测和荧光素酶报告试验证明miR-138-5p通过直接结合HIF-1α 3′-未翻译区域(3′-UTR)抑制HIF-1α。在PANC-1细胞中,miR-138-5p过表达可抑制HIF-1α表达及细胞增殖、侵袭、迁移,且差异有统计学意义(P<0.01)。结论 miR-138-5p结合HIF-1α 3′-UTR的沉默HIF-1α;miR-138-5p通过打靶HIF-1α而抑制胰腺癌细胞PANC-1增殖和转移。HIF-1α可能是胰腺癌的治疗靶点。  相似文献   

9.
10.
A growing body of evidence indicates that G protein-coupled receptors (GPCRs) are involved in breast tumor progression and that targeting GPCRs may be a novel adjuvant strategy in cancer treatment. However, due to the redundant role of multiple GPCRs in tumor development, it may be necessary to target a common signaling component downstream of these receptors to achieve maximum efficacy. GPCRs transmit signals through heterotrimeric G proteins composed of Gα and Gβγ subunits. Here we evaluated the role of Gβγ in breast tumor growth and metastasis both in vitro and in vivo. Our data show that blocking Gβγ signaling with Gα(t) or small molecule inhibitors blocked serum-induced breast tumor cell proliferation as well as tumor cell migration induced by various GPCRs in vitro. Moreover, induced expression of Gα(t) in MDA-MB-231 cells inhibited primary tumor formation and retarded growth of existing breast tumors in nude mice. Blocking Gβγ signaling also dramatically reduced the incidence of spontaneous lung metastasis from primary tumors and decreased tumor formation in the experimental lung metastasis model. Additional studies indicate that Gβγ signaling may also play a role in the generation of a tumor microenvironment permissive for tumor progression, because the inhibition of Gβγ signaling attenuated leukocyte infiltration and angiogenesis in primary breast tumors. Taken together, our data demonstrate a critical role of Gβγ signaling in promoting breast tumor growth and metastasis and suggest that targeting Gβγ may represent a novel therapeutic approach for breast cancer.  相似文献   

11.
ERBB2 overexpression occurs in numerous types of primary human tumors and alterations in microRNA (miRNA) expression have been associated with tumor suppression or tumorigenesis in human cancer, nevertheless, little is known about natural miRNAs acting on ERBB2. In this study, bioinformatical analysis of the 3′-UTRs of ERBB2 revealed the target elements for miR-548d-3p and miR-559. Moreover, a predicted miRNA/mRNA interaction experimental validation showed that both miR-548d-3p and miR-559 can interact specifically with the 3′-UTR of the ERBB2 mRNA. And miR-548d-3p plus miR-559 transfection showed a cooperative regulation of translationally repressing ERBB2 mRNA rather than by either miR-548d-3p or miR-559 alone. These results not only support the idea that different miRNAs can simultaneously and cooperatively repress a given target mRNA but also preliminarily validate the role of miR-548d-3p and miR-559 in regulating the ERBB2 expression. These data provide molecular basis for the application of miRNAs in ERBB2-targeted therapy.  相似文献   

12.
The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs),sharing a 5' AGCAGC sequence.These miRNAs have overlapping targets.In order to characterize the expression of miR-15/107 family miRNAs,we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members,and other selected miRNAs,in 11 human tissues obtained at autopsy including the cerebral cortex,frontal cortex,primary visual cortex,thalamus,heart,lung,liver,kidney,spleen,stomach and skeletal muscle.miR-103,miR-195 and miR-497 were expressed at similar levels across various tissues,whereas miR-107 is enriched in brain samples.We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons,astrocytes and microglia,respectively).In primary cultures of rat brain cells,several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS).In addition to mature miRNAs,we also examined the expression of precursors (pri-miRNAs).Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors.In summary,we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.  相似文献   

13.
MicroRNAs are potent regulators of gene expression and modulate multiple cellular processes including proliferation, differentiation and apoptosis. A number of microRNAs have been shown to be regulated by p53, the most frequently mutated gene in human cancer. It is has been demonstrated that some mutant p53 proteins not only lose tumor suppressor activity, but also acquire novel oncogenic functions that are independent of wild-type p53. In this review, we highlight recent evidences suggesting that some mutant p53 proteins regulate the expression of specific microRNAs to gain oncogenic functions and identify a gene network regulated by the microRNAs downstream of mutant p53.  相似文献   

14.
Osteosarcoma is the most common primary malignant bone tumor and has a high fatality rate in children and adolescents. Recently, an increasing amount of evidence has demonstrated that lncRNAs have crucial roles in regulating biological characteristics in malignant tumors. Therefore, this research was carried out to uncover the biological function and the potential molecular mechanism of SNHG12 in osteosarcoma. In this study, we found that SNHG12 was significantly upregulated in both osteosarcoma tissues and cell lines and osteosarcoma patients with high levels of SNHG12 tended to have a poor prognosis. We evaluated the biological function of SNHG12 in 143B and U2OS cells and show that the downregulation of SNHG12 suppressed cell proliferation by blocking cell cycle progression at the G0/G1 phase and weakened cell invasion and migration abilities. Dual-luciferase reporter and RIP assays were conducted to confirm that SNHG12 functioned as a ceRNA, modulating the expression of Notch2 by sponging miR-195-5p in osteosarcoma. We further demonstrate that Notch2 played a crucial role in activating the Notch signaling pathway. In conclusion, SNHG12 might serve as a valuable biomarker and prognosis factor in osteosarcoma patients. The SNHG12/miR-195-5p/Notch2-Notch signaling pathway axis might become a novel therapeutic for osteosarcoma.  相似文献   

15.
16.
17.
18.
MicroRNAs (miRNAs) have recently emerged as regulators of metastasis. We provide insight into the behavior of miR-221 in colorectal cancer (CRC) metastasis by showing that miR-221 is significantly upregulated in metastatic CRC cell lines and tissues. miR-221 overexpression enhances, whereas miR-221 depletion reduces CRC cell migration and invasion in vitro and metastasis in vivo. We identify RECK as a direct target of miR-221, reveal its expression to be inversely correlated with miR-221 in CRC samples and show that its re-introduction reverses miR-221-induced CRC invasiveness. Collectively, miR-221 is an oncogenic miRNA which may regulate CRC migration and invasion through targeting RECK.  相似文献   

19.
Glioblastoma (GBM) and other malignant gliomas are aggressive primary neoplasms of the brain that exhibit notable refractivity to standard treatment regimens. Recent large-scale molecular profiling has revealed distinct disease subclasses within malignant gliomas whose defining genomic features highlight dysregulated molecular networks as potential targets for therapeutic development. The "proneural" designation represents the largest and most heterogeneous of these subclasses, and includes both a large fraction of GBMs along with most of their lower-grade astrocytic and oligodendroglial counterparts. The pathogenesis of proneural gliomas has been repeatedly associated with dysregulated PDGF signaling. Nevertheless, genomic amplification or activating mutations involving the PDGF receptor (PDGFRA) characterize only a subset of proneural GBMs, while the mechanisms driving dysregulated PDGF signaling and downstream oncogenic networks in remaining tumors are unclear. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that regulate gene expression by binding loosely complimentary sequences in target mRNAs. The role of miRNA biology in numerous cancer variants is well established. In an analysis of miRNA involvement in the phenotypic expression and regulation of oncogenic PDGF signaling, we found that miR-34a is downregulated by PDGF pathway activation in vitro. Similarly, analysis of data from the Cancer Genome Atlas (TCGA) revealed that miR-34a expression is significantly lower in proneural gliomas compared to other tumor subtypes. Using primary GBM cells maintained under neurosphere conditions, we then demonstrated that miR-34a specifically affects growth of proneural glioma cells in vitro and in vivo. Further bioinformatic analysis identified PDGFRA as a direct target of miR-34a and this interaction was experimentally validated. Finally, we found that PDGF-driven miR-34a repression is unlikely to operate solely through a p53-dependent mechanism. Taken together, our data support the existence of reciprocal negative feedback regulation involving miR-34 and PDGFRA expression in proneural gliomas and, as such, identify a subtype specific therapeutic potential for miR-34a.  相似文献   

20.
The extracellular matrix (ECM), once thought to solely provide physical support to a tissue, is a key component of a cell’s microenvironment responsible for directing cell fate and maintaining tissue specificity. It stands to reason, then, that changes in the ECM itself or in how signals from the ECM are presented to or interpreted by cells can disrupt tissue organization; the latter is a necessary step for malignant progression. In this review, we elaborate on this concept using the mammary gland as an example. We describe how the ECM directs mammary gland formation and function, and discuss how a cell’s inability to interpret these signals—whether as a result of genetic insults or physicochemical alterations in the ECM—disorganizes the gland and promotes malignancy. By restoring context and forcing cells to properly interpret these native signals, aberrant behavior can be quelled and organization re-established. Traditional imaging approaches have been a key complement to the standard biochemical, molecular, and cell biology approaches used in these studies. Utilizing imaging modalities with enhanced spatial resolution in live tissues may uncover additional means by which the ECM regulates tissue structure, on different length scales, through its pericellular organization (short-scale) and by biasing morphogenic and morphostatic gradients (long-scale). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号