首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study, we determined that HP(2-20) (residues 2-20 of parental HP derived from the N-terminus of Helicobacter pylori Ribosomal Protein L1) and its analogue, HPA3, exhibit broad-spectrum antimicrobial activity. The primary objective of the present study was to gain insight into the relevant mechanisms of action using analogues of HP(2-20) together with model liposomes of various lipid compositions and electron microscopy. We determined that these analogues, HPA3 and HPA3NT3, exert potent antibacterial effects in low-salt buffer and antifungal activity against chitin-containing fungi, while having little or no hemolytic activity or cytotoxicity against mammalian cell lines. Our examination of the interaction of HP(2-20) and its analogues with liposomes showed that the peptides disturb both neutral and negatively-charged membranes, as demonstrated by the release of encapsulated fluorescent markers. The release of fluorescent markers induced by HP(2-20) and its analogues was inversely related to marker size. The pore created by HP(2-20) shows that the radius is approximately 1.8 nm, whereas HPA3, HPA3NT3, and melittin have apparent radii between 3.3 and 4.8 nm. Finally, as shown by electron microscopy, the liposomes and various microbial cells treated with HPA3 and HPA3NT3 showed oligomerization and blebbing similar to that seen with melittin, while HP(2-20) exhibited flabbiness. These results suggest that HP(2-20) may exert its antibiotic effects through a small pore (about 1.8 nm), whereas HPA3 and HPA3NT3 formed pores of a size consistent with those formed by melittin.  相似文献   

2.
In a previous study, we determined that HP(2-20) (residues 2-20 of parental HP derived from the N-terminus of Helicobacter pylori Ribosomal Protein L1) and its analogue, HPA3, exhibit broad-spectrum antimicrobial activity. The primary objective of the present study was to gain insight into the relevant mechanisms of action using analogues of HP(2-20) together with model liposomes of various lipid compositions and electron microscopy. We determined that these analogues, HPA3 and HPA3NT3, exert potent antibacterial effects in low-salt buffer and antifungal activity against chitin-containing fungi, while having little or no hemolytic activity or cytotoxicity against mammalian cell lines. Our examination of the interaction of HP(2-20) and its analogues with liposomes showed that the peptides disturb both neutral and negatively-charged membranes, as demonstrated by the release of encapsulated fluorescent markers. The release of fluorescent markers induced by HP(2-20) and its analogues was inversely related to marker size. The pore created by HP(2-20) shows that the radius is approximately 1.8 nm, whereas HPA3, HPA3NT3, and melittin have apparent radii between 3.3 and 4.8 nm. Finally, as shown by electron microscopy, the liposomes and various microbial cells treated with HPA3 and HPA3NT3 showed oligomerization and blebbing similar to that seen with melittin, while HP(2-20) exhibited flabbiness. These results suggest that HP(2-20) may exert its antibiotic effects through a small pore (about 1.8 nm), whereas HPA3 and HPA3NT3 formed pores of a size consistent with those formed by melittin.  相似文献   

3.
Three-dimensional (3D) models for the 79.2 kDa activated Cry1Ib9 and 77.4 kDa activated Cry3A δ-endotoxins from Bacillus thuringiensis (Bt) native isolates that are specifically toxic to Coleopteran insect pests were constructed by utilizing homology modeling online tool. Evidences presented here, based on the identification of structural equivalent residues of Cry1Ib9 and Cry3A toxin through homology modelling indicate that, they share a common Bt toxin tridimensional structure. The main differences observed in Cry1I9 domain I at positions α2b (S56-I60), α4 (F78-l93) and additionally β0 (Q10-L12), α8a (T280-V282) were observed, in domain II at positions α9b (P333-L339), β6(T390-Q393), β7(V398-W404), β8 (V418-W425), β9 (E453-N454), β10 (S470-I479) where as in domain III the changes were observed at positions β19 (R601-F607), β20 (609-L613), β21 (S618-F627) and α11a (K655-F664), α13, α14 components present at downstream sites, where as in Cry3A main differences observed in domain I is at the position of α4 (P105-I152), α5 (Q163-A185), β1A(E190-L192), α6 (F193-Y217), Domain II is not consevered and main variations were observed at β2 (E292-L295), β3(V299-L308), β4(I340-F347), β5(D356-P368), β6(I375-T377), β7(V389-F394), β8(K398-N405), β9(Y416-Y427), β10 (T436-Y439), β12(G476-H495), β12A (M503-I504) where as in domain III main variations observed at positions of β18 (P583-I593), β19(F604-S610), β20(P611-L615), β21(N619-G626). Cry1Ib9 and Cry3A contain the most variable regions in the loops of domain II, which determine the specificity of these toxins. These are the first models of Coleopteran-active protein from native isolates of Bt and its importance can be perceived since members of this group of toxins are potentially important candidates for coleoptera insect pest control programs.  相似文献   

4.
Selective algicidal action of peptides against harmful algal bloom species   总被引:1,自引:0,他引:1  
Park SC  Lee JK  Kim SW  Park Y 《PloS one》2011,6(10):e26733
Recently, harmful algal bloom (HAB), also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 μM within 2 min. Comparatively, its lysing effects occurred at 8 μM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 μM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 μM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on marine ecology.  相似文献   

5.
Extracellular serine proteinase cascades stimulate prophenoloxidase (proPO) activation and antimicrobial peptide production in insect innate immune responses. Serpins in plasma regulate such cascades by selective inhibition of proteinases, in reactions which result in the formation of covalent serpin-proteinase complexes. We carried out experiments to identify plasma proteinases that are inhibited by Manduca sexta serpin-3, an immune-inducible serpin known to regulate proPO activation. Immunoaffinity chromatography, using antiserum to serpin-3, yielded serpin-3 complexes with proteinases identified by immunoblot analysis as prophenoloxidase-activating proteinase (PAP)-1, PAP-2, PAP-3, and hemolymph proteinase 8 (HP8). HP8 can cleave and activate the Toll ligand, Spätzle, leading to synthesis of antimicrobial peptides. Analysis by mass spectrometry of tryptic peptides derived from the serpin-3 complexes confirmed the presence of PAP-1, PAP-3, and HP8. Purified recombinant serpin-3 and active HP8 formed an SDS-stable complex in vitro. Identification of serpin-3-proteinase complexes in plasma provides insight into proteinase targets of serpin-3 and extends the understanding of serpin/proteinase function in the immune response of M. sexta.  相似文献   

6.
氢酶是生物制氢的关键酶, 大多数氢酶因对氧极敏感而易失活, 因此提高氢酶的氧耐受性对生物制氢有重要意义。本研究利用1%甲基磺酸乙酯对Klebsiella oxytoca HP1进行了两轮诱变, 经40 mmol/L 甲硝唑和21%氧联合处理1 h(第一轮诱变)或2 h(第二轮诱变)进行筛选。所得突变菌株经产氢测试, 结果在15%氧浓度条件下, 第一代突变菌株HP1-A15产氢活性为出发菌株Klebsiella oxytoca HP1的3.70倍, 在21%氧浓度条件下第二代突变菌株 HPA15-37产氢活性为HP1-A15菌株的2.75倍, 是出发菌株的11倍。突变菌株HP1-A15和 HPA15-37具有较好的遗传稳定性。本试验结果说明利用MNZ和外加氧的方法适用于兼性厌氧菌耐氧产氢突变菌株的筛选。  相似文献   

7.
摘氢酶是生物制氢的关键酶,大多数氢酶因对氧极敏感而易失活,因此提高氢酶的氧耐受性对生物制氢有重要意义。本研究利用1%甲基磺酸乙酯对Klebsiella oxytoca HPl进行了两轮诱变,经40mmol/L甲硝唑和21%氧联合处理1h(第一轮诱变)或2h(第二轮诱变)进行筛选。所得突变菌株经产氢测试,结果在15%氧浓度条件下,第一代突变菌株HPl-A15产氢活性为出发菌株Klebsiella oxytoca HPl的3.70倍,在21%氧浓度条件下第二代突变菌株HPAl5-37产氢活性为HPl-A15菌株的2.75倍,是出发菌株的11倍。突变菌株HPl-A15和HPAl5-37具有较好的遗传稳定性。本试验结果说明利用MNZ和外加氧的方法适用于兼性厌氧菌耐氧产氢突变菌株的筛选。  相似文献   

8.
The HPA3 peptide is an analogue of the linear antimicrobial peptide, HP(2–20), isolated from the N-terminal region of the Helicobacter pylori ribosomal protein, able to interact with zwitterionic lipid membranes and generate pores. Herein we focused on the importance of the degree of unsaturation of lipid acyl chains on HPA3 peptide-membrane interactions. Electrophysiology experiments carried out in reconstituted lipid membranes formed from phosphatidylcholines with one (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine − POPC) and two monounsaturated acyl chains (1,2-dioleoyl-sn-glycero-3-phosphocholine − DOPC) demonstrate that the lesser degree of the packing density of membrane lipids encountered in DOPC-based planar membranes greatly enhances the electric activity of pores created by the HPA3 peptide. Data derived from fluorescence spectroscopy experiments demonstrate that upon interaction with the bilayer, the HPA3 peptide translocates to the trans-side of the membrane. From the same experiments, we demonstrate that in the case of DOPC-based planar membranes, the net amount of HPA3 peptide which passes across the membrane and re-dissolves in the trans solution is almost 22% greater than POPC-based membranes. Such data further emphasize the modulatory role played by lipid acyl chain in determining antimicrobial peptides-lipids interactions, and demonstrate that small differences in unsaturation degree can impose a sizeable influence on HPA3 peptide activity.  相似文献   

9.
Thermolysin-catalysed synthesis of p-nitroanilides of acylpeptides of general formula Z-A1-A2-pNA (A1 = Thr, Ala, Val, Leu; A2 = Leu, Phe) and stepwise synthesis of p-nitroanilides of acyltetrapeptides of general formula Z-A1-A2-A3-A4-pNA (A1, A2 = Gly,Ala; A3, A4 = Ala, Leu, Phe) from Z-A1-A2-OH and A3-pNA and then from Z-A1-A2-A3-OH and A4-pNA have been carried out; pNA group was eliminated enzymatically. Increase in solubility of the product in the reaction mixture diminishes its yield. Minimal amount of thermolysin providing a substantial yield of reaction product depends on structure of both amino and carboxylic components. In many cases the molar ratio of the enzyme and starting substances could be decreased to 1:10(6) as compared with the generally used ration 1:10(3)-1:10(4).  相似文献   

10.
The present work describes the synthesis and characterization of α/γ hybrid peptides, Boc‐Phe‐γ4‐Phe‐Val‐OMe, P1 ; Boc‐Ala‐γ4‐Phe‐Val‐OMe, P2 ; and Boc‐Leu‐γ4‐Phe‐Val‐OMe, P3 together with the formation of self‐assembled structures formed by these hybrid peptides in dimethyl sulfoxide (DMSO)/water (1:1). The self‐assembled structures were characterized by infrared (IR) spectroscopy, circular dichroism (CD), and scanning electron microscopy (SEM). Further, α/γ hybrid peptide self‐assembled structures were evaluated for antibacterial properties. Among all, the self‐assembled peptide P1 exhibited the antimicrobial activity against Escherichia coli and Klebsiella pneumoniae, while self‐assembled peptide P3 inhibited the biofilms of Salmonella typhimurium and Pseudomonas aeruginosa. In this study, we have shown the significance of self‐assembled structures formed from completely hydrophobic α/γ hybrid peptides in exploring the antibacterial properties together with biofilm inhibition.  相似文献   

11.

Background

Chronic hepatitis C infection is the leading cause of hepatocellular carcinoma (HCC), a highly lethal malignancy with rapidly increasing prevalence in the United States. Little is known about genetic variations and HCC risk. This study aimed to determine if genetic variation in Wnt signaling pathway genes are associated with advanced hepatic fibrosis and inflammation risk in a hepatitis C virus (HCV) infected population.

Methods

We performed a genetic association cross-sectional study evaluating single nucleotide polymorphisms (SNPs) in 58 candidate genes and risk of FibroSURE-Acti Test determined advanced fibrosis (F3/F4-F4 advanced cases vs. F0-F3 mild controls) and inflammation (A2/A3-A3 advanced cases vs. A0-A2 mild controls). We calculated odds ratios (ORs) and 95% confidence intervals (CIs) employing multivariate logistic regression. Haplotypes were inferred by the HAPLO.STAT program, interactions were evaluated using multifactor dimensionality reduction (MDR) analysis.

Results

Among 425 chronically HCV-infected male veterans, 155 (37%) had advanced fibrosis and 180 (42%) had advanced inflammation. Of 3016 SNPs evaluated, eight were significantly associated with fibrosis risk (e.g., SFRP2 rs11937424: OR = 2.19, 95% CI 1.48-3.23, P = 0.00004), and seven were significantly associated with inflammation risk (e.g., SFRP1 rs16890282: OR = 2.15, 95% CI 1.39-3.16, P = 0.0004). MDR analysis identified overweight/obese, SOST rs1405952, SFRP2 rs11937424, and FZD4 rs11234870 as the best interaction model for predicting risk of fibrosis; whereas race/ethnicity, FZD1 rs1346665, and TBX3 rs1520177 as the best interaction model for predicting risk of inflammation.

Conclusions

Polymorphisms in several genes involved in the Wnt signaling pathway were associated with hepatic fibrosis or inflammation risk in HCV-infected males. Additional studies in other multi-ethnic HCV cohorts are needed to validate our findings in males and to assess if similar associations exist in chronically HCV-infected females.  相似文献   

12.
Ecto-5′-nucleotidase/CD73/NT5E, the product of the NT5E gene, is the dominant enzyme in the generation of adenosine from degradation of AMP in the extracellular environment. Nonsense (c.662C→A, p.S221X designated F1, c.1609dupA, p.V537fsX7 designated F3) and missense (c.1073G→A, p.C358Y designated F2) NT5E gene mutations in three distinct families have been shown recently to cause premature arterial calcification disease in human patients. However, the underlying mechanisms by which loss-of-function NT5E mutations cause human disease are unknown. We hypothesized that human NT5E gene mutations cause mistrafficking of the defective proteins within cells, ultimately blocking NT5E catalytic function. To test this hypothesis, plasmids encoding cDNAs of wild type and mutant human NT5E tagged with the fluorescent probe DsRed were generated and used for transfection and heterologous expression in immortalized monkey COS-7 kidney cells that lack native NT5E protein. Enzyme histochemistry and Malachite green assays were performed to assess the biochemical activities of wild type and mutant fusion NT5E proteins. Subcellular trafficking of fusion NT5E proteins was monitored by confocal microscopy and western blot analysis of fractionated cell constituents. All 3 F1, F2, and F3 mutations result in a protein with significantly reduced trafficking to the plasma membrane and reduced ER retention as compared to wild type protein. Confocal immunofluorescence demonstrates vesicles containing DsRed-tagged NT5E proteins (F1, F2 and F3) in the cell synthetic apparatus. All 3 mutations resulted in absent NT5E enzymatic activity at the cell surface. In conclusion, three familial NT5E mutations (F1, F2, F3) result in novel trafficking defects associated with human disease. These novel genetic causes of human disease suggest that the syndrome of premature arterial calcification due to NT5E mutations may also involve a novel “trafficking-opathy”.  相似文献   

13.
HP36, the helical subdomain of villin headpiece, contains a hydrophobic core composed of three phenylalanine residues (Phe47, Phe51, and Phe58). Hydrophobic effects and electrostatic interactions were shown to be the critical factors in stabilizing this core and the global structure. To assess the interactions among Phe47, Phe51, and Phe58 residues and investigate how they affect the folding stability, we implanted 4‐fluorophenylalanine (Z) and 4‐methylphenylalanine (X) into the hydrophobic core of HP36. We chemically synthesized HP36 and its seven variants including four single mutants whose Phe51 or Phe58 was replaced with Z or X, and three double mutants whose Phe51 and Phe58 were both substituted. Circular dichroism and nuclear magnetic resonance measurements show that the variants exhibit a native HP36 like fold, of which F51Z and three double mutants are more stable than the wild type. Molecular modeling provided detailed interaction energy within the phenylalanine residues, revealing that electrostatic interactions dominate the stability modulation upon the introduction of 4‐fluorophenylalanine and 4‐methylphenylalanine. Our results show that these two non‐natural amino acids can successfully tune the interactions in a relatively compact hydrophobic core and the folding stability without inducing dramatic steric effects. Such an approach may be applied to other folded motifs or proteins. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 627–637, 2015.  相似文献   

14.
Plasmid pSC101 is neither self-transmissible nor efficiently mobilized (made to transfer) by the Escherichia coli F factor. When fragments of F factor DNA were inserted into pSC101 the resulting chimeric plasmids were mobilized by the F factor at enhanced frequencies. These chimeric plasmids, which were not self-transmissible, fell into three classes according to their relative ability to be mobilized by an autonomous or integrated F factor: (1) class I pSC101-F chimeric plasmids contain the origin of transfer of the F factor (oriT) and were mobilized in trans at an efficiency nearly equal to that of F factor transfer; (2) class II pSC101-F chimeric plasmids lacked both oriT and the origin of vegetative F replication (oriV1), and were mobilized in cis via fusion with the F factor in a recA-dependent recombination to yield a transferable co-integrated plasmid; (3) class III pSC101-F chimeric plasmids lacked oriT but contained oriV1 and were mobilized in cis via co-integration with the F factor probably at oriV1 in a recA-independent recombination. A fourth class of mobilization event, not exhibited by pSC101-F chimeric plasmids, was also observed. Mobilization of pBR322 and pSC101 occurred in cis via transposon-mediated recA-independent fusion with F. On the basis of these results we present a general classification scheme of non-conjugative plasmids and also suggest mechanisms for their mobilization.  相似文献   

15.
A rapid method for the quantitative determination of tyrosine (Tyr), phenylalanine (Phe), p-hydroxybenzoic acid (HBA), p-hydroxyphenylacetic acid (HPA), benzoic acid (BZA), p-hydroxyphenylpyruvic acid (HPY), phenylacetic acid (PAA), phenyllactic acid (PLA), tryptophan (Trp), indoleacetic acid (IAA), phenylpyruvic acid (PPY), phenylpropionic acid (PPA) and cinnamic acid (CNA) in goat rumen fluid was established by high-performance liquid chromatography (HPLC). The mobile phase used for isocratic elution was 50 mM sodium phosphate buffer (pH 6.5)–methanol (97:3, v/v). The flow-rate was 1.0 ml/min; column temperature 40°C and compounds were monitored at 215 nm with a UV absorbance detector after injection of 10 μl of filtered rumen fluid. Analysis was completed within 40 min. The minimum detectable limits of quantification (μM) of these compounds were Tyr, 2; Phe, 3; HBA, 1; HPA, 2; BZA, 2; HPY, 8; PAA, 3; PLA, 4; Trp, 2; IAA, 2; PPY, 15; PPA, 8 and CNA, 4. Detectable levels of Tyr, Phe, HPA, BZA, HPY, PAA, PLA, Trp and PPA were found in the deproteinized rumen fluid of goat fed a haycube and concentrate mixture. PAA was the predominant compound before and after feeding. The concentrations of HPA, BZA, PAA, PLA and PPA in the goat rumen fluid increased after feeding, while the concentration of Tyr decreased. Phe, HPY and Trp were minor components at all times. PPY, IAA and CNA were not detected and HBA was not completely resolved in the goat rumen fluid.  相似文献   

16.
Xanthone production in Hypericum perforatum (HP) suspension cultures in response to elicitation by Agrobacterium tumefaciens co-cultivation has been studied. RNA blot analyses of HP cells co-cultivated with A. tumefaciens have shown a rapid up-regulation of genes encoding important enzymes of the general phenylpropanoid pathway (PAL, phenylalanine ammonia lyase and 4CL, 4-coumarate:CoA ligase) and xanthone biosynthesis (BPS, benzophenone synthase). Analyses of HPLC chromatograms of methanolic extracts of control and elicited cells (HP cells that were co-cultivated for 24 h with A. tumefaciens) have revealed a 12-fold increase in total xanthone concentration and also the emergence of many xanthones after elicitation. Methanolic extract of elicited cells exhibited significantly higher antioxidant and antimicrobial competence than the equivalent extract of control HP cells indicating that these properties have been significantly increased in HP cells after elicitation. Four major de novo synthesized xanthones have been identified as 1,3,6,7-tetrahydroxy-8-prenyl xanthone, 1,3,6,7-tetrahydroxy-2-prenyl xanthone, 1,3,7-trihydroxy-6-methoxy-8-prenyl xanthone and paxanthone. Antioxidant and antimicrobial characterization of these de novo xanthones have revealed that xanthones play dual function in plant cells during biotic stress: (1) as antioxidants to protect the cells from oxidative damage and (2) as phytoalexins to impair the pathogen growth.  相似文献   

17.
Little is known on antimicrobial peptide permeation through outer membrane channels in Gram-negative bacteria. Herein, we probed at a single-molecule level the interaction of two different peptides, magainin 2 and HPA3P with OmpF from E. coli. HPA3P is an analogue of the antimicrobial peptide HP(2–20) isolated from the N-terminal region of the Helicobacter pylori ribosomal protein. Our data show that the shorter and more charged HPA3P peptide is more accessible to the inner volume of the OmpF than magainin 2. We demonstrate the ability of HPA3P peptides to interact with OmpF in a voltage- and concentration-dependent manner, which does not rule out a novel mechanism by which such peptides could reach the periplasmic space of Gram-negative bacteria. Unexpectedly, we found that increasing the applied voltage led to an increase of the residence time of HPA3P peptide inside the pore, possibly reflecting electric field-induced changes in pore and peptide geometry.  相似文献   

18.
Structural studies have been extended to dual lesions where an exocyclic adduct is positioned opposite an abasic site in the center of a DNA oligomer duplex. NMR and energy minimization studies were performed on the 1,N2-propanodeoxyguanosine exocyclic adduct (X) positioned opposite a tetrahydrofuran abasic site (F) with the dual lesions located in the center of the (C1-A2-T3-G4-X5-G6-T7-A8-C9).(G10-T11-A12-C-13-F14-C15 -A16-T17-G-18) X.F 9-mer duplex. Two-dimensional NMR experiments establish that the X.F 9-mer helix is right-handed with Watson-Crick A.T and G.C base pairing on either side of the lesion site. NOEs are detected from the methylene protons of the exocyclic ring of X5 to the imino protons of G4.C15 and G6.C13 which flank the lesion site, as well as to the H1' and H1" protons of the cross strand F14 tetrahydrofuran moiety. These NMR results establish that the exocyclic adduct X5 is positioned between flanking G4.C15 and G6.C13 base pairs and directed toward the abasic lesion F14 on the partner strand. These studies establish that the exocyclic ring of the 1,N2-propanodeoxyguanosine adduct fits into the cavity generated by the abasic site.  相似文献   

19.
The bumetanide-sensitive Na(+):K(+):2Cl(-) cotransporter (BSC1) is the major pathway for salt reabsorption in the apical membrane of the mammalian thick ascending limb of Henle. Three isoforms of the cotransporter, known as A, B, and F, exhibit axial expression along the thick ascending limb. We report here a functional comparison of the three isoforms from mouse kidney. When expressed in Xenopus oocytes the mBSC1-A isoform showed higher capacity of transport, with no difference in the amount of surface expression. Kinetic characterization revealed divergent affinities for the three cotransported ions. The observed EC(50) values for Na(+), K(+), and Cl(-) were 5.0 +/- 3.9, 0.96 +/- 0.16, and 22.2 +/- 4.8 mm for mBSC1-A; 3.0 +/- 0.6, 0.76 +/- 0.07, and 11.6 +/- 0.7 mm for mBSC1-B; and 20.6 +/- 7.2, 1.54 +/- 0.16, and 29.2 +/- 2.1 mm for mBSC1-F, respectively. Bumetanide sensitivity was higher in mBSC1-B compared with the mBSC1-A and mBSC1-F isoforms. All three transporters were partially inhibited by hypotonicity but to different extents. The cell swelling-induced inhibition profile was mBSC1-F > mBSC1-B > mBSC1-A. The function of the Na(+):K(+):2Cl(-) cotransporter was not affected by extracellular pH or by the addition of metolazone, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), or R(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1-H-indenyl-5-yl)-oxy]acetic acid (DIOA) to the extracellular medium. In contrast, exposure of oocytes to HgCl(2) before the uptake period reduced the activity of the cotransporter. The effect of HgCl(2) was dose-dependent, and mBSC1-A and mBSC1-B exhibited higher affinity than mBSC1-F. Overall, the functional comparison of the murine apical renal-specific Na(+):K(+):2Cl(-) cotransporter isoforms A, B, and F reveals important functional, pharmacological, and kinetic differences, with both physiological and structural implications.  相似文献   

20.
HP (2–20) (AKKVFKRLEKLFSKIQNDK) is the antimicrobial sequence derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RPL1). In order to develop novel antibiotic peptides useful as therapeutic agents, potent antibiotic activities against bacteria, fungi and cancer cells without a cytotoxic effect are essential. To this end, several analogues with amino acid substitutions were designed to increase or decrease only the net hydrophobicity. In particular, the substitution of Trp for the hydrophobic amino acids, Gln and Asp at positions 17 and 19 of HP (2–20) (Anal 3), caused a dramatic increase in antibiotic activity without a hemolytic effect.In contrast, the decrease of hydrophobicity brought about by substituting Ser for Leu and Phe at positions 12 and 19 of HP (2–20), respectively (Anal 4, Anal 5), did not have a significant effect on the antibiotic activity. The antibiotic effects of these synthetic peptides were further investigated by treating prepared protoplasts of Candida albicans and conducting an artificial liposomal vesicle (PC/PS; 3:1, w/w) disrupting activity test. The results demonstrated that the Anal 3 prevented the regeneration of fungal cell walls and induced an enhanced release of fluorescent dye (carboxyfluorescein) trapped in the artificial membrane vesicles to a greater degree than HP (2–20).The potassium-release test conducted on C. albicans indicated that Anal 3 induced greater amounts of potassium ion to be released than the parent peptide, HP (2–20) did. These results indicated that the hydrophobic region of peptides is prerequisite for its effective antibiotic activity and may facilitate easy penetration of the lipid bilayers of the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号