首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of mRNA for the ghrelin receptor, GHS-R1a, was detected in various peripheral and central tissues of fetal rats, including skin, bone, heart, liver, gut, brain and spinal cord, on embryonic day (ED)15 and ED17. However, its expression in skin, bone, heart and liver, but not in gut, brain and spinal cord, became relatively weak on ED19 and disappeared after birth (ND2). Ghrelin and des-acyl ghrelin facilitated the proliferation of cultured fetal (ED17, 19), but not neonatal (ND2), skin cells. On the other hand, with regard to cells from the spinal cord and hypothalamus, the proliferative effect of ghrelin continued after birth, whereas the effect of des-acyl ghrelin on neurogenesis in these tissues was lost at the ED19 fetal and ND2 neonatal stages. Immunohistochemistry revealed that the cells in the hypothalamus induced to proliferate by ghrelin at the ND2 stage were positive for nestin and glial fibrillary acidic protein. These results suggest that in the period immediately prior to, and after birth, rat fetal cells showing proliferation in response to ghrelin and des-acyl ghrelin are at a transitional stage characterized by alteration of the expression of GHS-R1a and an undefined des-acyl ghrelin receptor, their responsiveness varying among different tissues.  相似文献   

2.
Ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), are expressed in the heart, and may function to promote cardiomyocyte survival, differentiation and contractility. Previously, we had generated a truncated analog of ghrelin conjugated to fluorescein isothiocyanate for the purposes of determining GHS-R expression in situ. We now report the generation and characterization of a far-red ghrelin analog, [Dpr3(octanoyl), Lys19(Cy5)]ghrelin (1–19), and show that it can be used to image changes in GHS-R in developing cardiomyocytes. We also generated the des-acyl analog, des-acyl [Lys19(Cy5)]ghrelin (1–19) and characterized its binding to mouse heart sections. Receptor binding affinity of Cy5-ghrelin as measured in HEK293 cells overexpressing GHS-R1a was within an order of magnitude of that of fluorescein-ghrelin and native human ghrelin, while the des-acyl Cy5-ghrelin did not bind GHS-R1a. Live cell imaging in HEK293/GHS-R1a cells showed cell surface labeling that was displaced by excess ghrelin. Interestingly, Cy5-ghrelin, but not the des-acyl analog, showed concentration-dependent binding in mouse heart tissue sections. We then used Cy5-ghrelin to track GHS-R expression in P19-derived cardiomyocytes. Live cell imaging at different time points after DMSO-induced differentiation showed that GHS-R expression preceded that of the differentiation marker aMHC and tracked with the contractility marker SERCA 2a. Our far-red analog of ghrelin adds to the tools we are developing to map GHS-R in developing and diseased cardiac tissues.  相似文献   

3.
Expressions of the growth hormone secretagogue receptor (GHS-R) mRNA and its protein were confirmed in rat fetal spinal cord tissues by RT-PCR and immunohistochemistry. In vitro, over 3 nM ghrelin and des-acyl ghrelin induced significant proliferation of primary cultured cells from the fetal spinal cord. The proliferating cells were then double-stained using antibodies against the neuronal precursor marker, nestin, and the cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), and the nestin-positive cells were also found to be co-stained with antibody against GHS-R. Furthermore, binding studies using [125I]des-acyl ghrelin indicated the presence of a specific binding site for des-acyl ghrelin, and confirmed that the binding was displaced with unlabeled des-acyl ghrelin or ghrelin. These results indicate that ghrelin and des-acyl ghrelin induce proliferation of neuronal precursor cells that is both dependent and independent of GHS-R, suggesting that both ghrelin and des-acyl ghrelin are involved in neurogenesis of the fetal spinal cord.  相似文献   

4.
Originally thought of as a stomach-derived endocrine peptide acting via its receptors in the central nervous system to stimulate food intake and growth hormone expression, ghrelin and its receptor (growth hormone secretagogue receptor (GHS-R)) are widely expressed in a number of organ systems, including cancer cells. However, the direct functional role of ghrelin and its receptor in tumors of central nervous system origin remains to be defined. Here, we demonstrate that the human astrocytoma cell lines U-118, U-87, CCF-STTG1, and SW1088 express 6-, 11-, 15-, and 29-fold higher levels of GHS-R compared with primary normal human astrocytes. The ligation of GHS-R by ghrelin on these cells resulted in an increase in intracellular calcium mobilization, protein kinase C activation, actin polymerization, matrix metalloproteinase-2 activity, and astrocytoma motility. In addition, ghrelin led to actin polymerization and membrane ruffling on cells, with the specific co-localization of the small GTPase Rac1 with GHS-R on the leading edge of the astrocytoma cells and imparting the tumor cells with a motile phenotype. Disruption of the endogenous ghrelin/GHS-R pathway by RNA interference resulted in diminished motility, matrix metalloproteinase activity, and Rac expression, whereas tumor cells stably overexpressing GHS-R exhibited increased cell motility. The relevance of ghrelin and GHS-R expression was verified in clinically relevant tissues from 20 patients with oligodendrogliomas and grade II-IV astrocytomas. Analysis of a central nervous system tumor tissue microarray revealed that strong GHS-R and ghrelin expression was significantly more common in high grade tumors compared with low grade ones. Together, these findings suggest a novel role for the ghrelin/GHS-R axis in astrocytoma cell migration and invasiveness of cancers of central nervous system origin.  相似文献   

5.
Recent research suggests a role for ghrelin in the modulation of inflammatory disorders. However, the type of ghrelin receptor (GHS-R) involved in both the anti-inflammatory and anti-hyperalgesic actions of ghrelin remains to be characterized. In this study, we examined whether the inhibitory effect of ghrelin in the development of hyperalgesia and edema induced by intraplantar carrageenan administration depends on an interaction with GHS-R1a. Both central (1 nmol/rat, i.c.v.) and peripheral (40 nmol/kg, i.p.) administration of the selective GHS-R1a agonist EP1572 had no effect on carrageenan-induced hyperalgesia measured by Randall–Selitto test and paw edema. Furthermore, pre-treatment with the selective GHS-R1a antagonist, d-lys3-GHRP-6 (3 nmol/rat, i.c.v.) failed to prevent the anti-hyperalgesic and anti-inflammatory effects exerted by central ghrelin administration (1 nmol/rat), thus indicating that the type 1a GHS-R is not involved in these peptide activities. Accordingly, both central (1 and 2 nmol/rat, i.c.v.) and peripheral (40 and 80 nmol/kg, i.p.) administration of desacyl-ghrelin (DAG), which did not bind GHS-R1a, induced a significant reduction of the hyperalgesic and edematous activities of carrageenan. In conclusion, we have shown for the first time that DAG shares with ghrelin an inhibitory role in the development of hyperalgesia, as well as the paw edema induced by carrageenan and that a ghrelin receptor different from type 1a is involved in the anti-inflammatory activities of the peptide.  相似文献   

6.
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is the only circulating agent to powerfully promote a positive energy balance. Such action is mediated predominantly by central nervous system pathways controlling food intake, energy expenditure, and nutrient partitioning. The ghrelin pathway may therefore offer therapeutic potential for the treatment of catabolic states. However, the potency of the endogenous hormone ghrelin is limited due to a short half-life and the fragility of its bioactivity ensuring acylation at serine 3. Therefore, we tested the metabolic effects of two recently generated GHS-R agonists, BIM-28125 and BIM-28131, compared with ghrelin. All agents were administered continuously for 1 mo in doses of 50 and 500 nmol x kg(-1) x day(-1) using implanted subcutaneous minipumps in rats. High-dose treatment with single agonists or ghrelin increased body weight gain by promoting fat mass, whereas BIM-28131 was the only one also increasing lean mass significantly. Food intake increased during treatment with BIM-28131 or ghrelin, whereas no effects on energy expenditure were detected. With the lower dose, only BIM-28131 had a significant effect on body weight. This also held true when the compound was administered by subcutaneous injection three times/day. No symptoms or signs of undesired effects were observed in any of the studies or treated groups. These results characterize BIM-28131 as a promising GHS-R agonist with an attractive action profile for the treatment of catabolic disease states such as cachexia.  相似文献   

7.
8.
We previously identified ghrelin and motilin genes in Suncus murinus (suncus), and also revealed that motilin induces phase III-like strong contractions in the suncus stomach in vivo, as observed in humans and dogs. Moreover, repeated migrating motor complexes were found in the gastrointestinal tract of suncus at regular 120-min intervals. We therefore proposed suncus as a small laboratory animal model for the study of gastrointestinal motility. In the present study, we identified growth hormone secretagogue receptor (GHS-R) and motilin receptor (GPR38) genes in the suncus. We also examined their tissue distribution throughout the body. The amino acids of suncus GHS-R and GPR38 showed high homology with those of other mammals and shared 42% amino acid identity. RT-PCR showed that both the receptors were expressed in the hypothalamus, medulla oblongata, pituitary gland and the nodose ganglion in the central nervous system. In addition, GHS-R mRNA expressions were detected throughout the stomach and intestine, whereas GPR38 was expressed in the gastric muscle layer, lower intestine, lungs, heart, and pituitary gland. These results suggest that ghrelin and motilin affect gut motility and energy metabolism via specific receptors expressed in the gastrointestinal tract and/or in the central nervous system of suncus.  相似文献   

9.
《Hormones and behavior》2012,61(5):572-580
Ghrelin is an orexigenic peptide that acts within the central nervous system to stimulate appetite and food intake via the growth hormone secretagogue receptor (GHS-R). It has been hypothesized that ghrelin modulates food intake in part by stimulating reward pathways in the brain and potentially stimulating the intake of palatable foods. Here we examined the effects of chronic ghrelin administration in the ventral tegmental area (VTA) via osmotic minipumps on 1) ad libitum food intake and bodyweight; 2) macronutrient preference; and 3) motivation to obtain chocolate pellets. In the first study rats receiving ghrelin into the VTA showed a dose-dependent increase in the intake of regular chow, also resulting in increased body weight gain. A second study revealed that intra-VTA delivery of the ghrelin receptor antagonist [Lys-3]-GHRP-6 selectively reduced caloric intake of high-fat chow and reduced body weight gain relative to control and ghrelin treated rats. The third study demonstrated that food restricted rats worked harder for food pellets when infused with ghrelin than when infused with vehicle or ghrelin receptor antagonist treated rats. Finally, rats trained on an FR1 schedule but returned to ad libitum during ghrelin infusion, responded at 86% of baseline levels when they were not hungry, whereas saline infused rats responded at 36% of baseline. Together, these results suggest that ghrelin acts directly on the VTA to increase preference for and motivation to obtain highly-palatable food.  相似文献   

10.
Ghrelin is an important hormone involved in the control of the human appetite center. Recently, protective properties of this hormone have been recognized in various models of impairment of the gastric mucosa, including stress, ischemia and reperfusion (I/R). Ghrelin is predominantly secreted by the gastric mucosa of stomach, but there are other sources of ghrelin, for example in the hypothalamus and various parts of the central nervous system (CNS) that should be taken into consideration. This hormone exerts biological effects via the activation of growth hormone secretagogue receptor (GHSR), the presence of which was confirmed in different parts of the gastrointestinal (GI) tract and midbrain structures. Although substantial evidence of the divergent biological effects of ghrelin and the mechanism of its action has been emphasized, the precise mechanisms of ghrelin which affords GI protection is still unclear. Particularly, there is a sparse amount of evidence concerning its action on the GI system. The major aim of the present study was to evaluate the importance of peripherally and centrally administered ghrelin at different times of the ischemia and reperfusion (I/R period in the modulation of resistance of the intestinal mucosa to the injury induced by ischemia and subsequent reperfusion. Secondly, we wanted to evaluate the possible mechanism of the action of ghrelin with a particular focus on its influence on the intestinal blood flow. Male Wistar rats were divided into 4 series (A-D) of the experimental groups (n=7). In series A the importance of peripherally administered ghrelin at different time of I/R period was studied. In series B the importance of centrally administered ghrelin at different time of I/R period was evaluated. In series C and D, the mechanisms of peripherally and centrally administered hormone were examined, respectively. Two models of the I/R period were selected: short lasting (30/60 min) and long lasting (60/120 min). The following drugs were used: ghrelin (50 μg/kg i.p. or 1 nmol in 10 μl i.c.v.), 6 hydroxy dopamine (50 mg/kg i.p.), nadolol (0.5 mg/kg i.p.), calcitonin gene related peptide fragment (CGRP(8-37), 100 μg /kg i.p.), capsaicin (5-10 mg/100 ml solution s.c.). The mesenteric blood flow (MBF-ml/min), the intestinal microcirculatory blood flow (LDBF-PU), the arterio-venous oxygen difference (AVO(2)-ml/O(2)/100 ml blood), and the intestinal oxygen uptake (VO(2)) in ml O(2)/min were measured. Mucosal impairment was assessed planimetrically with the use of a digital photo analyzer (LA) and histologically with the use of the six-point Park/Chiu scale. Peripheral administration of ghrelin evoked marked increase of MBF and LDBF by 42% and 48%, respectively, with significant reduction of LA by 38%. When ghrelin was administered at the beginning of the reperfusion period during the short I/R period or prior to the long lasting I/R period, the vascular reactions and protective effects were reduced, but not completely abolished. The central administration of ghrelin before the short I/R period significantly increased the MBF and LDBF by about 32% and 35%, respectively, as well as LA reduction by about 20% in comparison to the control group. However, when ghrelin was administered prior to the long I/R period or after the onset of completed ischemia, neither vascular nor protective effects were noticed. Sensory denervation and the blockade of the CGRP1 receptors totally blocked the protective and hyperemic effects of the peripherally administered ghrelin. Selective blockade of the adrenergic system or blunting of the vagal nerves (vagotomy) significantly but not totally eliminated the effects of centrally applied ghrelin, which were abolished when both adrenergic and parasympathetic pathways were ablated. These results indicate that ghrelin applied centrally or peripherally markedly increases resistance of the intestinal tissue during the I/R period induced mucosal and hyperemic impairment evoked by I/R. Ghrelin is an important mediator of the increase in the intestinal microcirculation and elevation of the intestinal metabolism, which seems to be, at least in part, responsible for the observed protection of the intestine subjected to I/R. Impairment of this microvasculature response due to I/R seems to be responsible for a markedly observed weaker effect of ghrelin when this hormone was administered after the ischemic period. The lack of a protective effect observed after central administration of this peptide against a long lasting I/R period is probably due to damage of neural pathways caused by I/R. Finally, the peripheral activity of ghrelin in the intestine is mediated by the sensory neurons with a prominent role of CGRP released from their endings. However, this peripheral action of ghrelin depends upon the proper functioning of both the sympathetic and parasympathetic system.  相似文献   

11.
Ghrelin is an orexigenic peptide that acts within the central nervous system to stimulate appetite and food intake via the growth hormone secretagogue receptor (GHS-R). It has been hypothesized that ghrelin modulates food intake in part by stimulating reward pathways in the brain and potentially stimulating the intake of palatable foods. Here we examined the effects of chronic ghrelin administration in the ventral tegmental area (VTA) via osmotic minipumps on 1) ad libitum food intake and bodyweight; 2) macronutrient preference; and 3) motivation to obtain chocolate pellets. In the first study rats receiving ghrelin into the VTA showed a dose-dependent increase in the intake of regular chow, also resulting in increased body weight gain. A second study revealed that intra-VTA delivery of the ghrelin receptor antagonist [Lys-3]-GHRP-6 selectively reduced caloric intake of high-fat chow and reduced body weight gain relative to control and ghrelin treated rats. The third study demonstrated that food restricted rats worked harder for food pellets when infused with ghrelin than when infused with vehicle or ghrelin receptor antagonist treated rats. Finally, rats trained on an FR1 schedule but returned to ad libitum during ghrelin infusion, responded at 86% of baseline levels when they were not hungry, whereas saline infused rats responded at 36% of baseline. Together, these results suggest that ghrelin acts directly on the VTA to increase preference for and motivation to obtain highly-palatable food.  相似文献   

12.
The study of the interaction of ghrelin (1), the endogenous ligand for the GH secretagogues receptor (GHS-R1a), and des-acyl ghrelin (2) with the GHS-R1a by NMR using living cells is presented, using GHS-R1a stably transfected cell lines (CHO and HEK 293) and wild type cells. Therefore, the interaction of 1 and 2 with the GHS-R1a receptor has been performed using quasi-physiological conditions. Ghrelin (1), showed a higher number of residues affected by chemical shift perturbation (CSP) or chemical shift exchange (CSE) effects: Ser3, Phe4, Leu5, Val12, Gln13/Gln14, Lys16/Lys19, Glu17 and Lys24 were much more affected in 1 than in des-acyl ghrelin (2). The chemical shift index CSI values indicated the presence of a possible α-helical region between Glu8 and Lys20 for ghrelin (1). After analysing the NMR data, two possible structures have arisen, which present different proline rotamers: the EEZE and the EZEZ conformers, at positions Pro7, Pro21, Pro22 and Pro27, respectively, keeping a left-handed α-helix from Glu8 to Lys20. These experimental evidences might imply that the GHS-R1a receptor is acting as a prolyl-cis/trans isomerase.  相似文献   

13.
Ghrelin is implicated in growth and feeding regulation in fish. The influence of ghrelin on behavior has not been well studied and the physiological role of des-fatty acid modification of this peptide is unclear. Therefore, the effects of intracerebroventricular (ICV) and intraperitoneal (IP) administration of synthetic n-octanoylated (acyl) goldfish ghrelin and des-n-octanoylated (des-acyl) ghrelin on locomotor and orexigenic activity in the goldfish were examined. ICV administration of acyl ghrelin at doses of 1 and 2 pmol/g body weight (BW) and IP administration at 16 pmol/g BW both induced significant increases in locomotor activity during for 45-60 min after treatment. Cumulative food intake was significantly increased by ICV injection of acyl ghrelin at doses of 1 and 2 pmol/g BW and IP injection at 8 and 16 pmol/g BW during the 60-min post-treatment observation period. In contrast, ICV and IP administration of des-acyl ghrelin produced no changes in locomotor and orexigenic activity. We also analyzed fasting-induced changes in the expression of ghrelin mRNA in the brain and intestine using a real-time PCR method. The level of ghrelin mRNA in the intestine, but not in the brain, obtained from fish fasted for 7 days was significantly higher than that in fish that had been fed normally. These results suggest that, in the goldfish, acyl ghrelin, but not des-acyl ghrelin, stimulates locomotor activity and enhances food intake via central and peripheral pathways.  相似文献   

14.
Regulation of food intake by acyl and des-acyl ghrelins in the goldfish   总被引:2,自引:0,他引:2  
Our recent research has indicated that intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of n-octanoic acid-modified ghrelin (acyl ghrelin) stimulates food intake and locomotor activity in the goldfish. The manner in which peripherally administered acyl ghrelin regulates food intake, however, remains unclear. In contrast to acyl ghrelin, non-acylated ghrelin (des-acyl ghrelin) does not exert an orexigenic action or induce hypermotility. To this extent, the biological role of des-acyl ghrelin in fish is unknown. Given the possible involvement of afferent pathways in mediating the effects of acyl ghrelin, as is known to occur in rodents, we examined the effect of capsaicin, a neurotoxin which destroys primary sensory (vagal and splanchnic) afferents, on the orexigenic activity induced by i.p.-injected acyl ghrelin. Pretreatment with i.p.-injected capsaicin (0.16 micromol/g body weight (BW)) cancelled the orexigenic action of i.p.-injected acyl ghrelin (8 pmol/g BW), although i.p.-injected capsaicin alone did not affect food intake. The effect of des-acyl ghrelin on the orexigenic action of acyl ghrelin in the goldfish was also investigated. The i.c.v. and i.p. injection of des-acyl ghrelin at doses 3-10 times higher than that of acyl ghrelin suppressed the orexigenic action of i.c.v.- and i.p.-injected acyl ghrelin (doses of 1 and 8 pmol/g BW). In contrast, injection of des-acyl ghrelin alone did not show any inhibitory effect on food intake. These results suggest that, as is seen in rodents, circulating acyl ghrelin derived from peripheral tissues acts via primary sensory afferent pathways on feeding centers in the brain. The results also show that des-acyl ghrelin inhibits acyl ghrelin-induced orexigenic activity in goldfish.  相似文献   

15.
Ghrelin is a hormone with a crucial role in the regulation of appetite, regulation of inflammation, glucose metabolism and cell proliferation. In the brain ghrelin neurons are located in the cortex (sensorimotor area, cingular gyrus), and the fibres of ghrelin neurons in hypothalamus project directly to the dorsal vagal complex (DVC). Ghrelin binds the growth hormone secretagogue receptor (GHS-R) a G-protein-coupled receptor with a widespread tissue distribution, indeed these receptors are localized both in nonnervous, organs/tissues (i.e. adipose tissue, myocardium, adrenals, gonads, lung, liver, arteries, stomach, pancreas, thyroid, and kidney) as well as in central nervous system (CNS) and higher levels of expression in the pituitary gland and the hypothalamus and lower levels of expression in other organs, including brain. A GHS-R specific monoclonal antibody has been developed and characterized and through it we demonstrate that GHS-R is expressed in primary neurons and that its expression is dependent upon their developmental stage and shows differences according to the brain region involved, with a more pronounced expression in hippocampal rather than cortical neurons. A characterization of GHS-R within the central nervous system is of extreme importance in order to gain insights on its role in the modulation of neurodegenerative events such as Alzheimer’s disease.  相似文献   

16.
Ghrelin, an acylated 28-amino peptide secreted in the gastric endocrine cells, has been demonstrated to stimulate the release of growth hormone, increase food intake, and inhibit pro-inflammatory cascade, etc. Ghrelin mainly combines with its receptor (GHS-R1α) to play the role in physiological and pathological functions. It has been reported that ghrelin plays important roles in the control of pain through interaction with the opioid system in inflammatory pain and acute pain. However, very few studies show the effect of supraspinal ghrelin system on antinociception induced by intraperitoneal (i.p.) administration of morphine. In the present study, intracerebroventricular (i.c.v.) injection of ghrelin (0.1, 1, 10 and 100 nmol/L) produced inhibition of systemic morphine (6 mg/kg, i.p.) analgesia in the tail withdrawal test. Similarly, i.c.v. injection GHRP-6 and GHRP-2 which are the agonists of GHS-R1α, also decreased analgesia effect induced by morphine injected intraperitoneally in mice. Furthermore, these anti-opioid activities of ghrelin and related peptides were not blocked by pretreatment with the GHS-R1α selective antagonist [d-Lys3]-GHRP-6 (100 nmol/L, i.c.v.). These results demonstrated that central ghrelin and related peptides could inhibit the analgesia effect induced by intraperitoneal (i.p.) administration of morphine. The anti-opioid effects of ghrelin and related peptides do not interact with GHS-R1a. These findings may pave the way for a new strategy on investigating the interaction between ghrelin system and opioids on pain modulation.  相似文献   

17.
Ghrelin is an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents. An increasing number of studies have reported that ghrelin and its identified receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), produces remarkably wide and complex functions and biological effects on specific populations of neurons in central nervous system. In this study, we sought to explore the in vivo effects of acute ghrelin exposure on lateral amygdala (LA) neurons at the physiological and behavioral levels. In vivo extracellular single-unit recordings showed that ghrelin with the concentration of several nanomolars (nM) stimulated spontaneous firing of the LA neurons, an effect that was dose-dependent and could be blocked by co-application of a GHS-R1a antagonist D-Lys3-GHRP-6. We also found that D-Lys3-GHRP-6 inhibited spontaneous firing of the LA neurons in a dose-dependent manner, revealing that tonic GHS-R1a activity contributes to orchestrate the basal activity of the LA neurons. Behaviorally, we found that microinfusion of ghrelin (12 ng) into LA before training interfered with the acquisition of conditioned taste aversion (CTA) as tested at 24 h after conditioning. Pre-treatment with either purified IgG against GHS-R1a or GHS-R1a antagonist blocked ghrelin’s effect on CTA memory acquisition. Ghrelin (12 ng) had no effect on CTA memory consolidation or the expression of acquired CTA memory; neither did it affect the total liquid consumption of tested rats. Altogether, our data indicated that ghrelin locally infused into LA blocks acquisition of CTA and its modulation effects on neuronal firing may be involved in this process.  相似文献   

18.
Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg) to the dopaminergic cells of the ventral tegmental area (VTA) and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.). Ghrelin receptors (GHS-R1A) are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg) to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating.  相似文献   

19.
Baragli A  Lanfranco F  Allasia S  Granata R  Ghigo E 《Peptides》2011,32(11):2323-2332
Acylated ghrelin (AG) is a 28 amino acid gastric peptide a natural ligand for the growth hormone secretagogue (GHS) receptor type 1a (GHS-R1a), endowed with GH-secreting and orexigenic properties. Besides, ghrelin exerts several peripheral metabolic actions, including modulation of glucose homeostasis and stimulation of adipogenesis. Notably, AG administration causes hyperglycemia in rodents as in humans. Ghrelin pleiotropy is supported by a widespread expression of the ghrelin gene, of GHS-R1a and other unknown ghrelin binding sites. The existence of alternative receptors for AG, of several natural ligands for GHS-R1a and of acylation-independent ghrelin non-neuroendocrine activities, suggests that there might be a complex ‘ghrelin system’ not yet completely explored. Moreover, the patho-physiological implications of unacylated ghrelin (UAG), and obestatin (Ob), the other two ghrelin gene-derived peptides, need to be clarified. Within the next few years, we may better understand the ‘ghrelin system’, where we might envisage clinical applications.  相似文献   

20.
Ghrelin is an acylated peptidyl gastric hormone acting on the pituitary and hypothalamus to stimulate appetite, adiposity, and growth hormone release, through activation of growth hormone secretagogue receptor (GHSR)-1a receptor. Moreover, ghrelin features several activities such as inhibition of apoptosis, regulation of differentiation, and stimulation or inhibition of proliferation of several cell types. Ghrelin acylation is absolutely required for both GHSR-1a binding and its central endocrine activities. However, the unacylated ghrelin form, des-acyl ghrelin, which does not bind GHSR-1a and is devoid of any endocrine activity, is far more abundant than ghrelin in plasma, and it shares with ghrelin some of its cellular activities. In here we show that both ghrelin and des-acyl ghrelin stimulate proliferating C2C12 skeletal myoblasts to differentiate and to fuse into multinucleated myotubes in vitro through activation of p38. Consistently, both ghrelin and des-acyl ghrelin inhibit C2C12 proliferation in growth medium. Moreover, the ectopic expression of ghrelin in C2C12 enhances differentiation and fusion of these myoblasts in differentiation medium. Finally, we show that C2C12 cells do not express GHSR-1a, but they do contain a common high-affinity binding site recognized by both acylated and des-acylated ghrelin, suggesting that the described activities on C2C12 are likely mediated by this novel, yet unidentified receptor for both ghrelin forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号