首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthrax is an acute disease caused by Bacillus anthracis. Some animal species are relatively resistant to anthrax infection. This trait has been correlated to the extent of the local inflammatory reaction, suggesting innate immunity to be the first line of defense against B. anthracis infection in nonimmunized hosts. Group IIA secreted phospholipase A2 (sPLA2-IIA) is produced in particular by macrophages and possesses potent antibacterial activity especially against Gram-positive bacteria. We have previously shown in vitro that sPLA2-IIA kills both germinated B. anthracis spores and encapsulated bacilli. Here we show that sPLA2-IIA plays in vivo a protective role against experimental anthrax. Transgenic mice expressing human sPLA2-IIA are resistant to B. anthracis infection. In addition, in vivo administration of recombinant human sPLA2-IIA protects mice against B. anthracis infection. The protective effect was observed both with a highly virulent encapsulated nontoxinogenic strain and a wild-type encapsulated toxinogenic strain, showing that toxemia did not hinder the sPLA2-IIA-afforded protection. sPLA2-IIA, a natural component of the immune system, may thus be considered a novel therapeutic agent to be used in adjunct with current therapy for treating anthrax. Its anthracidal activity would be effective even against strains resistant to multiple antibiotics.  相似文献   

2.
We previously showed that group V secretory phospholipase A(2) (sPLA(2)V) is inhibited by sphingomyelin (SM), but activated by ceramide. Here, we investigated the effect of sphingolipid structure on the activity and acyl specificity of sPLA(2)V. Degradation of HDL SM to ceramide, but not to ceramide phosphate, stimulated the activity by 6-fold, with the release of all unsaturated fatty acids being affected equally. Ceramide-enrichment of HDL similarly stimulated the release of unsaturated fatty acids. Incorporation of SM into phosphatidylcholine (PC) liposomes preferentially inhibited the hydrolysis of 16:0-20:4 PC. Conversely, SMase C treatment or ceramide incorporation resulted in preferential stimulation of hydrolysis of 16:0-20:4 PC. The presence of a long chain acyl group in ceramide was essential for the activation, and long chain diacylglycerols were also effective. However, ceramide phosphate was inhibitory. These studies show that SM and ceramide in the membranes and lipoproteins not only regulate the activity of phospholipases, but also the release of arachidonate, the precursor of eicosanoids.  相似文献   

3.
Group V phospholipase A2 is a recently discovered secretory phospholipase A2 (PLA2) that has been shown to be involved in eicosanoid formation in inflammatory cells, such as macrophages and mast cells. We have demonstrated that human group V PLA2 (hsPLA2-V) can bind phosphatidylcholine (PC) membranes and hydrolyze PC substrates much more efficiently than human group IIa PLA2, which makes it better suited for acting on the outer plasma membrane (Han, S.-K., Yoon, E. T., and Cho, W. (1998) Biochem. J. 331, 353-357). In this study, we demonstrate that exogenous hsPLA2-V has much greater activity than does group IIa PLA2 to release fatty acids from various mammalian cells and to elicit leukotriene B4 formation from human neutrophils. To understand the molecular basis of these activities, we mutated two surface tryptophans of hsPLA2-V to alanine (W31A and W79A) and measured the effects of these mutations on the kinetic activity toward various substrates, on the binding affinity for vesicles and phospholipid-coated beads, on the penetration into phospholipid monolayers, and on the activity to release fatty acids and elicit eicosanoid formation from various mammalian cells. These studies show that the relatively high ability of hsPLA2-V to induce cellular eicosanoid formation derives from its high affinity for PC membranes and that Trp31 on its putative interfacial binding surface plays an important role in its binding to PC vesicles and to the outer plasma membrane.  相似文献   

4.
To investigate the role of sphingomyelin (SM) in the regulation of inflammatory reactions, we studied its effect on the activity and fatty acid specificity of group X secretory phospholipase A(2) (sPLA(2)X). Compared with other phospholipases, recombinant sPLA(2)X released more arachidonate from HDL. Pretreatment of HDL with sphingomyelinase (SMase) C activated the sPLA(2)X activity, but the release of arachidonate was stimulated less than that of linoleate. In liposomes containing synthetic phosphatidylcholines (PCs), sPLA(2)X showed no clear selectivity among the various sn-2 unsaturated fatty acids. However, when SM was incorporated into liposomes at 30 mol%, the enzyme exhibited strong preference for arachidonate, although its overall activity was inhibited. Degradation of liposomal SM by SMase C resulted in sPLA(2)X activation and loss of its arachidonate preference. Incorporation of ceramide into HDL or PC liposomes activated the enzyme activity, the release of arachidonate being stimulated more than that of linoleate. SM-deficient cells released more arachidonate than normal cells in response to exogenous sPLA(2)X. SMase pretreatment of normal cells stimulated the release of arachidonate by the exogenous sPLA(2)X. These results show that SM not only inhibits sPLA(2)X activity but also contributes to its selectivity for arachidonate, whereas ceramide stimulates the hydrolysis of arachidonate-containing PCs.  相似文献   

5.
The development of fibrosis in the chronically hypertensive heart is associated with infiltration of inflammatory cells and cardiac hypertrophy. In this study, an inhibitor of the proinflammatory enzyme, group IIA human secretory phospholipase A2 (sPLA2-IIA), has been found to prevent collagen deposition as an important component of cardiovascular remodeling in a rat model of developing chronic hypertension. Daily treatment of young male spontaneously hypertensive rats (SHR) with an sPLA2-IIA inhibitor (KH064, 5-(4-benzyloxyphenyl)-4S-(phenyl-heptanoylamino)-pentanoic acid, 5 mg/kg/day p.o.) prevented increases in the content of perivascular (SHR 20.6 +/- 0.9%, n = 5; SHR+KH064 14.0 +/- 1.2%, n = 5) and interstitial (SHR 7.9 +/- 0.3%, n = 6; SHR+KH064 5.4 +/- 0.7%, n = 6) collagen in the left ventricle of rat hearts, but did not affect numbers of infiltrating monocytes/macrophages, left ventricular hypertrophy (SHR 2.88 +/- 0.08, n = 12; SHR+KH064 3.09 +/- 0.08 mg/g body weight, n = 9), increased systolic blood pressure, or thoracic aortic responses. This selective antifibrotic activity suggests that sPLA2-IIA may have an important but specific role in cardiac fibrosis, and that its inhibitors could be useful in dissecting molecular pathways leading to fibrotic conditions.  相似文献   

6.
Pande AH  Qin S  Nemec KN  He X  Tatulian SA 《Biochemistry》2006,45(41):12436-12447
Despite increasing evidence that the membrane-binding mode of interfacial enzymes including the depth of membrane insertion is crucial for their function, the membrane insertion of phospholipase A(2) (PLA(2)) enzymes has not been studied systematically. Here, we analyze the membrane insertion of human group IB PLA(2) (hIBPLA(2)) and compare it with that of a structurally homologous V3W mutant of human group IIA PLA(2) (V3W-hIIAPLA(2)) and with a structurally divergent group III bee venom PLA(2) (bvPLA(2)). Increasing the anionic charge of membranes results in a blue shift of the fluorescence of Trp(3) of hIBPLA(2), a decrease in quenching by acrylamide, and an increase in enzyme activity, reflecting an enhancement in the membrane binding of PLA(2). Fluorescence quenching by brominated lipids indicates significant penetration of Trp(3) into fluid POPC/POPG membranes but little insertion into the solid DPPC/DPPG membranes. Increased membrane fluidity also supports hIBPLA(2) activity, suggesting that membrane insertion of hIBPLA(2) is controlled by membrane fluidity and is necessary for the full activity of the enzyme. Trp fluorescence quenching of the V3W-hIIAPLA(2) and bvPLA(2) by water- and membrane-soluble quenchers indicates substantial membrane insertion of Trp(3) of V3W-hIIAPLA(2), similar to that found for hIBPLA(2), and no insertion of tryptophans of bvPLA(2). Our results provide evidence that (a) structurally similar group IB and IIA PLA(2)s, but not structurally diverse group III PLA(2), significantly penetrate into membranes; (b) membrane insertion is controlled by membrane fluidity and facilitates activation of IB and IIA PLA(2)s; and (c) structurally distinct PLA(2) isoforms may employ different tactics of substrate accession/product release during lipid hydrolysis.  相似文献   

7.
Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA.  相似文献   

8.
Activation of brain mitochondrial phospholipase(s) A(2) (PLA(2)) might contribute to cell damage and be involved in neurodegeneration. Despite the potential importance of the phenomenon, the number, identities, and properties of these enzymes are still unknown. Here, we demonstrate that isolated mitochondria from rat brain cortex, incubated in the absence of respiratory substrates, release a Ca(2+)-dependent PLA(2) having biochemical properties characteristic to secreted PLA(2) (sPLA(2)) and immunoreacting with the antibody raised against recombinant type IIA sPLA(2) (sPLA(2)-IIA). Under identical conditions, no release of fumarase in the extramitochondrial medium was observed. The release of sPLA(2) from mitochondria decreases when mitochondria are incubated in the presence of respiratory substrates such as ADP, malate, and pyruvate, which causes an increase of transmembrane potential determined by cytofluorimetric analysis using DiOC(6)(3) as a probe. The treatment of mitochondria with the uncoupler carbonyl cyanide 3-chlorophenylhydrazone slightly enhances sPLA(2) release. The increase of sPLA(2) specific activity after removal of mitochondrial outer membrane indicates that the enzyme is associated with mitoplasts. The mitochondrial localization of the enzyme has been confirmed by electron microscopy in U-251 astrocytoma cells and by confocal laser microscopy in the same cells and in PC-12 cells, where the structurally similar isoform type V-sPLA(2) has mainly nuclear localization. In addition to sPLA(2), mitochondria contain another phospholipase A(2) that is Ca(2+)-independent and sensitive to bromoenol lactone, associated with the outer mitochondrial membrane. We hypothesize that, under reduced respiratory rate, brain mitochondria release sPLA(2)-IIA that might contribute to cell damage.  相似文献   

9.
We have shown recently that oxidized but not native lipoproteins stimulate the activity of secretory phospholipase A2 group IIA (sPLA2(IIA)). Since oxidized lipoproteins potentially contain considerable amounts of oxidized phosphatidylcholine, we examined the effect of oxidized palmitoyl arachidonyl phosphatidylcholine (oxPC) and the competitive effects of oxPC and sphingomyelin (SM) on sPLA2(IIA) activity.OxPC either added to the assay medium as separated liposomes or incorporated in varied amounts into LDL progressively enhanced the activity of purified human sPLA2(IIA) and abolished the inhibitory effect of LDL-incorporated SM on the enzyme activity. OxPC completely abolished the inhibitory effect of SM at the oxPC/SM concentration ratio 1/2. On the other hand, SM suppressed the activating effect of oxPC in a dose-dependent manner, abolishing it almost completely at a concentration 8 times as high as that of oxPC.Thus, changes in the oxPC/SM concentration ratio in LDL may affect the regulatory mechanisms of sPLA2(IIA) activity in human blood, inducing stimulation or inhibition of the enzyme. Influence on regulation of sPLA2(IIA) activity can be useful in the development of new therapeutic approaches to the treatment of cardiovascular diseases.  相似文献   

10.
Phospholipase A2 was isolated from human sperm and its potential role in the membrane fusion events of fertilization was examined. Highly purified enzyme hydrolyzed the phospholipids of [1-14C]oleate-labeled Escherichia coli optimally at neutral to alkaline pH with 5 mM CaCl2 and 150 mM NaCl (specific activity = 20 mumol/min/mg). Activity was inhibited in a dose-dependent manner by an oligomer of prostaglandin B1 (IC50 = 1.5 microM) reported to inhibit human phospholipases A2 in vitro and in situ. Sperm phospholipase A2 injected into mouse foot pad induced a dose-dependent edema that was inhibited by oral administration of prostaglandin Bx (IC50 < or = 10 mg/kg) or by pretreatment of the enzyme with 4-bromophenacyl bromide. Human sperm phospholipase A2 (10 micrograms) induced fusion of phosphatidylserine vesicles in the presence of 1 mM calcium chloride by approximately 80% (+/- 10%) as determined by monitoring turbidity (O.D.400) and efficiency of fluorescence resonance energy transfer. This enzyme-induced fusion was accompanied by phospholipid hydrolysis, and both fusion and phospholipid degradation were inhibited by more than 60% when enzyme was preincubated with 5 microM prostaglandin Bx. Sperm penetration of zona pellucida-free hamster oocytes was inhibited in a dose-dependent fashion when sperm were incubated with prostaglandin Bx (IC50 approximately 15 microM) during capacitation; sperm motility was not affected by this treatment. Capacitation in the presence of prostaglandin Bx had little to no effect on the in vitro acrosome reaction. These results suggest that sperm phospholipase A2 and its modulators may contribute to membrane fusion events in mammalian fertilization.  相似文献   

11.
Mammalian secretory phospholipases A(2) (sPLA(2)) have been implicated in cellular eicosanoid biosynthesis but the mechanism of their cellular action remains unknown. To elucidate the spatiotemporal dynamics of sPLA(2) mobilization and determine the site of its lipolytic action, we performed time-lapse confocal microscopic imaging of fluorescently labeled sPLA(2) acting on human embryonic kidney (HEK) 293 cells the membranes of which are labeled with a fluorogenic phospholipid, N-((6-(2,4-dinitrophenyl)amino)hexanoyl)-1-hexadecanoyl-2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphoethanolamine. The Western blotting analysis of HEK293 cells treated with exogenous sPLA(2)s showed that not only the affinity for heparan sulfate proteoglycan but also other factors, such as sPLA(2) hydrolysis products or cytokines, are necessary for the internalization of sPLA(2) into HEK293 cells. Live cell imaging showed that the hydrolysis of fluorogenic phospholipids incorporated into HEK293 cell membranes was synchronized with the spatiotemporal dynamics of sPLA(2) internalization, detectable initially at the plasma membrane and then at the perinuclear region. Also, immunocytostaining showed that human group V sPLA(2) induced the translocation of 5-lipoxygenase to the nuclear envelope at which they were co-localized. Together, these studies provide the first experimental evidence that the internalized sPLA(2) acts on the nuclear envelope to provide arachidonate for other enzymes involved in the eicosanoid biosynthesis.  相似文献   

12.
Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects. Although sPLA(2)-V released almost the same amount of fatty acids from LDL, it released more linoleic acid and less arachidonic acid than sPLA(2)-X. In addition, the requirement of Ca(2+) for the lipolysis of LDL was about 10-fold higher for sPLA(2)-V than sPLA(2)-X. In fact, the release of fatty acids from human serum was hardly detectable upon incubation with sPLA(2)-V in the presence of sodium citrate, which contrasted with the potent response to sPLA(2)-X. Moreover, sPLA(2)-X, but not sPLA(2)-V, was found to specifically interact with LDL among the serum proteins, as assessed by gel-filtration chromatography as well as sandwich enzyme-immunosorbent assay using anti-sPLA(2)-X and anti-apoB antibodies. Surface plasmon resonance studies have revealed that sPLA2-X can bind to LDL with high-affinity (K(d) = 3.1 nM) in the presence of Ca(2+). Selective interaction of sPLA(2)-X with LDL might be involved in the efficient hydrolysis of cell surface or intracellular phospholipids during foam cell formation.  相似文献   

13.
Given the potent hydrolyzing activity toward phosphatidylcholine, group X secretory phospholipase A(2) (sPLA(2)-X) elicits a marked release of arachidonic acid linked to the potent production of lipid mediators in various cell types. We have recently shown that sPLA(2)-X can also act as a ligand for mouse phospholipase A(2) receptor (PLA(2)R). Here, we found that sPLA(2)-X was internalized and degraded via binding to PLA(2)R associated with the diminished prostaglandin E(2) (PGE(2)) formation in PLA(2)R-expressing Chinese hamster ovary (CHO) cells compared to CHO cells. Indirect immunocytochemical analysis revealed that internalized sPLA(2)-X was co-localized with PLA(2)R in the punctate structures in PLA(2)R-expressing CHO cells. Moreover, in mouse osteoblastic MC3T3-E(1) cells that endogenously express the PLA(2)R, the internalized sPLA(2)-X was localized in lysosomes. These findings demonstrate that PLA(2)R acts as a clearance receptor for sPLA(2)-X to suppress its strong enzymatic activity.  相似文献   

14.
The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils.  相似文献   

15.
The mechanisms by which secretory phospholipases A(2) (PLA(2)s) exert cellular effects are not fully understood. Group IIF PLA(2) (gIIFPLA(2)) is a structurally unique secretory PLA(2) with a long C-terminal extension. Homology modeling suggests that the membrane-binding surface of this acidic PLA(2) contains hydrophobic residues clustered near the C-terminal extension. Vesicle leakage and monolayer penetration measurements showed that gIIFPLA(2) had a unique ability to penetrate and disrupt compactly packed monolayers and bilayers whose lipid composition recapitulates that of the outer plasma membrane of mammalian cells. Fluorescence imaging showed that gIIFPLA(2) could also readily enter and deform plasma membrane-mimicking giant unilamellar vesicles. Mutation analysis indicates that hydrophobic residues (Tyr(115), Phe(116), Val(118), and Tyr(119)) near the C-terminal extension are responsible for these activities. When gIIFPLA(2) was exogenously added to HEK293 cells, it initially bound to the plasma membrane and then rapidly entered the cells in an endocytosis-independent manner, but the cell entry did not lead to a significant degree of phospholipid hydrolysis. GIIFPLA(2) mRNA was detected endogenously in human CD4(+) helper T cells after in vitro stimulation and exogenously added gIIFPLA(2) inhibited the proliferation of a T cell line, which was not seen with group IIA PLA(2). Collectively, these data suggest that unique membrane-binding properties of gIIFPLA(2) may confer special functionality on this secretory PLA(2) under certain physiological conditions.  相似文献   

16.
17.
Summary Cis-unsaturated fatty acids, but not saturated fatty acids, inhibited phospholipase A2 activity (PLA2) in vitro, and may function as endogenous suppressors of lipolysis. To probe the possible role of lipid peroxidation in the regulation of myocardial lipid catabolism, a neutral-active and Ca2+-dependent PLA2 was extracted from rat heart and was partially purified by sulfopropyl cation exchange chromatography. Myocardial PLA, activity was inhibited in a dose-dependent manner by oleic, linoleic, linolenic, and arachidonic acids; the IC50 for arachidonic acid was approx 65 M. Palmitic acid was not inhibitory. When arachidonic acid was incubated at 37°C, exposed to air, there was a time- and pH-dependent peroxidation of the arachidonic acid as monitored by turbidity, thiobarbituric acid reactivity, and thin layer chromatography. Peroxidation was increased as the pH was lowered from 7.5 to 4.5, and was accompanied by a decrease in PLA2 inhibitory potency. Thus, arachidonate incubated for 24 hours at pH's 4.5, 6.0 and 7.5 lost 84%, 32%, and 20% respectively, of its inhibitory potency. Therefore, in vitro acidosis promotes the oxidation of cis-unsaturated fatty acids and relieves their inhibitory or suppressive activity toward PLA2s. Increased lipid peroxidation of unesterified unsaturated fatty acids during acidosis may therefore promote lipolysis observed during myocardial ischemia and reperfusion injury.  相似文献   

18.
19.
LDL particles that enter the arterial intima become exposed to proteolytic and lipolytic modifications. The extracellular hydrolases potentially involved in LDL modification include proteolytic enzymes, such as chymase, cathepsin S, and plasmin, and phospholipolytic enzymes, such as secretory phospholipases A2 (sPLA2-IIa and sPLA2-V) and secretory acid sphingomyelinase (sSMase). Here, LDL was first proteolyzed and then subjected to lipolysis, after which the effects of combined proteolysis and lipolysis on LDL fusion and on binding to human aortic proteoglycans (PG) were studied. Chymase and cathepsin S led to more extensive proteolysis and release of peptide fragments from LDL than did plasmin. sPLA2-IIa was not able to hydrolyze unmodified LDL, and even preproteolysis of LDL particles failed to enhance lipolysis by this enzyme. However, preproteolysis with chymase and cathepsin S accelerated lipolysis by sPLA2-V and sSMase, which resulted in enhanced fusion and proteoglycan binding of the preproteolyzed LDL particles. Taken together, the results revealed that proteolysis sensitizes the LDL particles to hydrolysis by sPLA2-V and sSMase. By promoting fusion and binding of LDL to human aortic proteoglycans, the combination of proteolysis and phospholipolysis of LDL particles potentially enhances extracellular accumulation of LDL-derived lipids during atherogenesis.  相似文献   

20.
We previously reported that exogenously added human group V phospholipase A2 (hVPLA2) could elicit leukotriene B4 biosynthesis in human neutrophils through the activation of group IVA phospholipase A2 (cPLA2) (Kim, Y. J., Kim, K. P., Han, S. K., Munoz, N. M., Zhu, X., Sano, H., Leff, A. R., and Cho, W. (2002) J. Biol. Chem. 277, 36479-36488). In this study, we determined the functional significance and mechanism of the exogenous hVPLA2-induced arachidonic acid (AA) release and leukotriene C4 (LTC4) synthesis in isolated human peripheral blood eosinophils. As low a concentration as 10 nm exogenous hVPLA2 was able to elicit the significant release of AA and LTC4 from unstimulated eosinophils, which depended on its ability to act on phosphatidylcholine membranes. hVPLA2 also augmented the release of AA and LTC4 from eosinophils activated with formyl-Met-Leu-Phe + cytochalasin B. A cellular fluorescent PLA2 assay showed that hVPLA2 had a lipolytic action first on the outer plasma membrane and then on the perinuclear region. hVPLA2 also caused the translocation of 5-lipoxygenase from the cytosol to the nuclear membrane and a 2-fold increase in 5-lipoxygenase activity. However, hVPLA2 induced neither the increase in intracellular calcium concentration nor cPLA2 phosphorylation; consequently, cPLA2 activity was not affected by hVPLA2. Pharmacological inhibition of cPLA2 and the hVPLA2-induced activation of eosinophils derived from the cPLA2-deficient mouse corroborated that hVPLA2 mediates the release of AA and leukotriene in a cPLA2-independent manner. As such, this study represents a unique example in which a secretory phospholipase induces the eicosanoid formation in inflammatory cells, completely independent of cPLA2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号