首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dual roles of Atg8-PE deconjugation by Atg4 in autophagy   总被引:1,自引:0,他引:1  
Yu ZQ  Ni T  Hong B  Wang HY  Jiang FJ  Zou S  Chen Y  Zheng XL  Klionsky DJ  Liang Y  Xie Z 《Autophagy》2012,8(6):883-892
Modification of target molecules by ubiquitin or ubiquitin-like (Ubl) proteins is generally reversible. Little is known, however, about the physiological function of the reverse reaction, deconjugation. Atg8 is a unique Ubl protein whose conjugation target is the lipid phosphatidylethanolamine (PE). Atg8 functions in the formation of double-membrane autophagosomes, a central step in the well-conserved intracellular degradation pathway of macroautophagy (hereafter autophagy). Here we show that the deconjugation of Atg8-PE by the cysteine protease Atg4 plays dual roles in the formation of autophagosomes. During the early stage of autophagosome formation, deconjugation releases Atg8 from non-autophagosomal membranes to maintain a proper supply of Atg8. At a later stage, the release of Atg8 from intermediate autophagosomal membranes facilitates the maturation of these structures into fusion-capable autophagosomes. These results provide new insights into the functions of Atg8-PE and its deconjugation.  相似文献   

2.
《Autophagy》2013,9(6):883-892
Modification of target molecules by ubiquitin or ubiquitin-like (Ubl) proteins is generally reversible. Little is known, however, about the physiological function of the reverse reaction, deconjugation. Atg8 is a unique Ubl protein whose conjugation target is the lipid phosphatidylethanolamine (PE). Atg8 functions in the formation of double-membrane autophagosomes, a central step in the well-conserved intracellular degradation pathway of macroautophagy (hereafter autophagy). Here we show that the deconjugation of Atg8?PE by the cysteine protease Atg4 plays dual roles in the formation of autophagosomes. During the early stage of autophagosome formation, deconjugation releases Atg8 from non-autophagosomal membranes to maintain a proper supply of Atg8. At a later stage, the release of Atg8 from intermediate autophagosomal membranes facilitates the maturation of these structures into fusion-capable autophagosomes. These results provide new insights into the functions of Atg8?PE and its deconjugation.  相似文献   

3.
4.
Structure of Atg5.Atg16, a complex essential for autophagy   总被引:2,自引:0,他引:2  
Atg5 is covalently modified with a ubiquitin-like modifier, Atg12, and the Atg12-Atg5 conjugate further forms a complex with the multimeric protein Atg16. The Atg12-Atg5.Atg16 multimeric complex plays an essential role in autophagy, the bulk degradation system conserved in all eukaryotes. We have reported here the crystal structure of Atg5 complexed with the N-terminal region of Atg16 at 1.97A resolution. Atg5 comprises two ubiquitin-like domains that flank a helix-rich domain. The N-terminal region of Atg16 has a helical structure and is bound to the groove formed by these three domains. In vitro analysis showed that Arg-35 and Phe-46 of Atg16 are crucial for the interaction. Atg16, with a mutation at these residues, failed to localize to the pre-autophagosomal structure and could not restore autophagy in Atg16-deficient yeast strains. Furthermore, these Atg16 mutants could not restore a severe reduction in the formation of the Atg8-phosphatidylethanolamine conjugate, another essential factor for autophagy, in Atg16-deficient strains under starvation conditions. These results taken together suggest that the direct interaction between Atg5 and Atg16 is crucial to the performance of their roles in autophagy.  相似文献   

5.
6.
Autophagy-related gene (Atg) 5 is a gene product required for the formation of autophagosomes. Here, we report that Atg5, in addition to the promotion of autophagy, enhances susceptibility towards apoptotic stimuli. Enforced expression of Atg5-sensitized tumour cells to anticancer drug treatment both in vitro and in vivo. In contrast, silencing the Atg5 gene with short interfering RNA (siRNA) resulted in partial resistance to chemotherapy. Apoptosis was associated with calpain-mediated Atg5 cleavage, resulting in an amino-terminal cleavage product with a relative molecular mass of 24,000 (Mr 24K). Atg5 cleavage was observed independent of the cell type and the apoptotic stimulus, suggesting that calpain activation and Atg5 cleavage are general phenomena in apoptotic cells. Truncated Atg5 translocated from the cytosol to mitochondria, associated with the anti-apoptotic molecule Bcl-xL and triggered cytochrome c release and caspase activation. Taken together, calpain-mediated Atg5 cleavage provokes apoptotic cell death, therefore, represents a molecular link between autophagy and apoptosis--a finding with potential importance for clinical anticancer therapies.  相似文献   

7.
Lysophosphatidic acid (LPA) is a bioactive lipid that serves as an extracellular signaling molecule acting through cognate G protein-coupled receptors designated LPA(1-6) that mediate a wide range of both normal and pathological effects. Previously, LPA(1), a G(αi)-coupled receptor (which also couples to other G(α) proteins) to reduce cAMP, was shown to be essential for the initiation of neuropathic pain in the partial sciatic nerve ligation (PSNL) mouse model. Subsequent gene expression studies identified LPA(5), a G(α12/13)- and G(q)-coupled receptor that increases cAMP, in a subset of dorsal root ganglion neurons and also within neurons of the spinal cord dorsal horn in a pattern complementing, yet distinct from LPA(1), suggesting its possible involvement in neuropathic pain. We therefore generated an Lpar5 null mutant by targeted deletion followed by PSNL challenge. Homozygous null mutants did not show obvious base-line phenotypic defects. However, following PSNL, LPA(5)-deficient mice were protected from developing neuropathic pain. They also showed reduced phosphorylated cAMP response element-binding protein expression within neurons of the dorsal horn despite continued up-regulation of the characteristic pain-related markers Caα(2)δ(1) and glial fibrillary acidic protein, results that were distinct from those previously observed for LPA(1) deletion. These data expand the influences of LPA signaling in neuropathic pain through a second LPA receptor subtype, LPA(5), involving a mechanistically distinct downstream signaling pathway compared with LPA(1).  相似文献   

8.
The molecular basis of chronic morphine exposure remains unknown. In this study, we hypothesized that macroautophagy/autophagy of dopaminergic neurons would mediate the alterations of neuronal dendritic morphology and behavioral responses induced by morphine. Chronic morphine exposure caused Atg5 (autophagy-related 5)- and Atg7 (autophagy-related 7)-dependent and dopaminergic neuron-specific autophagy resulting in decreased neuron dendritic spines and the onset of addictive behaviors. In cultured primary midbrain neurons, morphine treatment significantly reduced total dendritic length and complexity, and this effect could be reversed by knockdown of Atg5 or Atg7. Mice deficient for Atg5 or Atg7 specifically in the dopaminergic neurons were less sensitive to developing a morphine reward response, behavioral sensitization, analgesic tolerance and physical dependence compared to wild-type mice. Taken together, our findings suggested that the Atg5- and Atg7-dependent autophagy of dopaminergic neurons contributed to cellular and behavioral responses to morphine and may have implications for the future treatment of drug addiction.  相似文献   

9.
Calcium (Ca2+) signals are involved in important checkpoints in cell death pathways and promote both apoptosis and autophagy. However, the relationship between autophagy and apoptosis in response to Ca2+ level elevation is poorly understood. Here, we provided evidence that the influx of extracellular Ca2+ triggered by Trichokonin VI (TK VI), an antimicrobial peptide, induced calpain-dependent apoptosis and autophagy in hepatocellular carcinoma (HCC) cells. Remarkably, TK VI preferentially induced apoptosis that was associated with calpain-mediated Bax and Atg5 cleavage, which resulted in the collapse of the mitochondrial membrane potential and cytochrome c release. Interestingly, truncated, but not full-length Atg5, associated with Bcl-xL and promoted the intrinsic pathway. Moreover, TK VI treatment induced reactive oxygen species (ROS) accumulation, an effect in which Bak might play a major role. This accumulation of ROS resulted in the subsequent disposal of damaged mitochondria within autophagosomes via Atg5-mediated and mitochondria-selective autophagy. Both the inhibition of calpain activity and Bax deficiency activated a switch that promoted an enhancement of autophagy. The inhibition of both apoptosis and autophagy significantly attenuated the TK VI cytotoxicity, indicating that the two processes had stimulatory effects during TK VI-meditated cell death. These results suggested that calpain, Bak and Atg5 were molecular links between autophagy and apoptosis and revealed novel aspects of the crosstalk between these two processes. The potential of TK VI is proposed as a promising anticancer agent for its well-characterized activity of Ca2+ agonist and as a possible novel therapeutic strategy that acts on cancer cell mitochondria.  相似文献   

10.
《The Journal of cell biology》1995,129(5):1329-1344
Keratin 5 and keratin 14 have been touted as the hallmarks of the basal keratin networks of all stratified squamous epithelia. Absence of K14 gives rise to epidermolysis bullosa simplex, a human blistering skin disorder involving cytolysis in the basal layer of epidermis. To address the puzzling question of why this disease is primarily manifested in skin rather than other stratified squamous epithelia, we ablated the K14 gene in mice and examined various tissues expressing this gene. We show that a key factor is the presence of another keratin, K15, which was hitherto unappreciated as a basal cell component. We show that the levels of K15 relative to K14 vary dramatically among stratified squamous epithelial tissues, and with neonatal development. In the absence of K14, K15 makes a bona fide, but ultrastructurally distinct, keratin filament network with K5. In the epidermis of neonatal mutant mice, K15 levels are low and do not compensate for the loss of K14. In contrast, the esophagus is unaffected in the neonatal mutant mice, but does appear to be fragile in the adult. Parallel to this phenomenon is that esophageal K14 is expressed at extremely low levels in the neonate, but rises in postnatal development. Finally, despite previous conclusions that the formation of suprabasal keratin filaments might depend upon K5/K14, we find that a wide variety of suprabasal networks composed of different keratins can form in the absence of K14 in the basal layer.  相似文献   

11.
Integrin-linked kinase (ILK) is a serine/threonine kinase that is important in cell-matrix interactions and cell signaling. To examine the role of ILK in leukocyte trafficking and survival, we generated T cell-specific ILK knockouts by breeding ILK(flox/flox) mice to transgenic mice expressing Cre recombinase under control of the Lck proximal promoter. Thymic T cells from Lck-Cre(+)/ILK(flox/flox) mice had a marked reduction (>95%) in ILK protein levels. Thymic cellularity was comparable in 3- to 4-week-old mice, but a threefold diminution of thymic T cells became evident by 6 to 8 weeks of age in the T cell-specific ILK knockout mice due to increased cell death of double-positive (DP) T cells. Analysis of peripheral T cells by quantitative PCR and by breeding Lck-Cre(+)/ILK(flox/flox) mice to a YFP-transgenic reporter strain demonstrated an approximate 20-fold enrichment of ILK-competent cells, suggesting these cells have a competitive advantage in trafficking to and/or survival in peripheral lymphatic organs. We explored mechanisms related to altered cell trafficking and survival that might explain the decreases in thymic cellularity and enrichment for ILK-competent cells in the spleen and lymph nodes. We observed a >50% reduction in chemotaxis of ILK-deficient T cells to the chemokines CXCL12 (stromal cell-derived factor [SDF]-1alpha) and CCL19 (macrophage inflammatory protein [MIP]-3beta), as well as enhanced apoptosis of ILK-deficient cells upon stress. Signaling studies in ILK-deficient T cells demonstrated diminished phosphorylation of Akt on the activating phosphorylation site, Ser 473, and a concordant decrease in Akt kinase activity following stimulation with the chemokine SDF-1. Rac1 activation was also markedly diminished in ILK-deficient T cells following chemokine stimulation. These data extend the role of ILK to immune-cell trafficking and survival via modulation of Akt- and Rac-dependent substrates, and have implications for cell recruitment in both homeostatic and pathological processes.  相似文献   

12.
Host resistance to viral infection requires type I (α/β) and II (γ) interferon (IFN) production. Another important defense mechanism is the degradative activity of macroautophagy (herein autophagy), mediated by the coordinated action of evolutionarily conserved autophagy proteins (Atg). We show that the Atg5-Atg12/Atg16L1 protein complex, whose prior known function is in autophagosome formation, is required for IFNγ-mediated host defense against murine norovirus (MNV) infection. Importantly, the direct antiviral activity of IFNγ against MNV in macrophages required Atg5-Atg12, Atg7, and Atg16L1, but not induction of autophagy, the degradative activity of lysosomal proteases, fusion of autophagosomes and lysosomes, or the Atg8-processing protein Atg4B. IFNγ, via Atg5-Atg12/Atg16L1, inhibited formation of the membranous cytoplasmic MNV replication complex, where Atg16L1 localized. Thus, the Atg5-Atg12/Atg16L1 complex performs a pivotal, nondegradative role in IFNγ-mediated antiviral defense, establishing that multicellular organisms have evolved to use portions of the autophagy pathway machinery in a cassette-like fashion for host defense.  相似文献   

13.
Atg12 is conjugated to Atg5 through enzymatic reactions similar to ubiquitination. The Atg12–Atg5 conjugate functions as an E3‐like enzyme to promote lipidation of Atg8, whereas lipidated Atg8 has essential roles in both autophagosome formation and selective cargo recognition during autophagy. However, the molecular role of Atg12 modification in these processes has remained elusive. Here, we report the crystal structure of the Atg12–Atg5 conjugate. In addition to the isopeptide linkage, Atg12 forms hydrophobic and hydrophilic interactions with Atg5, thereby fixing its position on Atg5. Structural comparison with unmodified Atg5 and mutational analyses showed that Atg12 modification neither induces a conformational change in Atg5 nor creates a functionally important architecture. Rather, Atg12 functions as a binding module for Atg3, the E2 enzyme for Atg8, thus endowing Atg5 with the ability to interact with Atg3 to facilitate Atg8 lipidation.  相似文献   

14.
DNA N-glycosylase/AP (apurinic/apyrimidinic) lyase enzymes of the endonuclease III family (nth in Escherichia coli and Nth1 in mammalian organisms) initiate DNA base excision repair of oxidized ring saturated pyrimidine residues. We generated a null mouse (mNth1(-/-)) by gene targeting. After almost 2 years, such mice exhibited no overt abnormalities. Tissues of mNth1(-/-) mice contained an enzymatic activity which cleaved DNA at sites of oxidized thymine residues (thymine glycol [Tg]). The activity was greater when Tg was paired with G than with A. This is in contrast to Nth1, which is more active against Tg:A pairs than Tg:G pairs. We suggest that there is a back-up mammalian repair activity which attacks Tg:G pairs with much greater efficiency than Tg:A pairs. The significance of this activity may relate to repair of oxidized 5-methyl cytosine residues (5meCyt). It was shown previously (S. Zuo, R. J. Boorstein, and G. W. Teebor, Nucleic Acids Res. 23:3239-3243, 1995) that both ionizing radiation and chemical oxidation yielded Tg from 5meCyt residues in DNA. Thus, this previously undescribed, and hence novel, back-up enzyme activity may function to repair oxidized 5meCyt residues in DNA while also being sufficient to compensate for the loss of Nth1 in the mutant mice, thereby explaining the noninformative phenotype.  相似文献   

15.
The autophagy process involves a series of autophagy-related (Atg) proteins, which are conserved in eukaryotes. ULK1/Atg1-ATG13/Atg13 is the core protein complex for autophagy initiation in response to nutrient and hormone signaling. However, how Atg13 is regulated to participate in autophagy is unclear in insects. Here in Bombyx mori, the variation of BmAtg13 was correlated with autophagy induced by steroid hormone 20-hydroxyecdysone (20E) or starvation. Developmental profiles from feeding to prepupal stage revealed that there were two bands of BmAtg13 protein detected by western blot analysis, therein the upper band was intensively decreased, while the lower band was significantly increased which was in accordance with its mRNA variation; and immunofluorescent staining indicated that BmAtg13 was nucleocytoplasmic translocated during larval-pupal metamorphosis when autophagy was dramatically induced. BmAtg13 knockdown and overexpression both inhibits autophagy. Besides, 20E treatment-induced BmAtg13 gene expression, while blocking 20E signaling transduction by knockdown of BmUsp reduced both gene expression and protein level of BmAtg13. These results reveal that BmAtg13 is required for 20E- and starvation-induced autophagy in B. mori, which provides the foundation for further related studies.  相似文献   

16.
The physiologic importance of autophagy proteins for control of mammalian bacterial and parasitic infection in vivo is unknown. Using mice with granulocyte- and macrophage-specific deletion of the essential autophagy protein Atg5, we show that Atg5 is required for in vivo resistance to the intracellular pathogens Listeria monocytogenes and Toxoplasma gondii. In primary macrophages, Atg5 was required for interferongamma (IFN-gamma)/LPS-induced damage to the T. gondii parasitophorous vacuole membrane and parasite clearance. While we did not detect classical hallmarks of autophagy, such as autophagosomes enveloping T. gondii, Atg5 was required for recruitment of IFN-gamma-inducible p47 GTPase IIGP1 (Irga6) to the vacuole membrane, an event that mediates IFN-gamma-mediated clearance of T. gondii. This work shows that Atg5 expression in phagocytic cells is essential for cellular immunity to intracellular pathogens in vivo, and that an autophagy protein can participate in immunity and intracellular killing of pathogens via autophagosome-independent processes such as GTPase trafficking.  相似文献   

17.
A rat cDNA encoding a 51-kD protein tyrosine phosphatase (PTP1) was cloned into a mammalian expression vector and transfected into normal and v-src-transformed mouse NIH 3T3 fibroblasts. In the stable subclones isolated, PTP1 expression at the mRNA level was elevated twofold to 25-fold. The highest constitutive level of phosphotyrosine-specific dephosphorylating activity observed without cytotoxic effects or significant clonal instability was approximately 10-fold over the endogenous activity. The expressed PTP1 was found to be associated with the particulate fraction of the fibroblasts. Subcellular fractionation and immunofluorescent microscopic examination of PTP1-overexpressing cells has shown the phosphatase to be localized to the reticular network of the ER. PTP1 was readily solubilized by detergents, but not by high salt. Limited proteolysis of membrane-associated PTP1 resulted in the release of lower molecular mass (48 and 37 kD) forms of the enzyme to the cytosol. Thermal phase partitioning of isolated membranes with Triton X-114 indicated that the full-length PTP1 was strongly integrated into the membrane in contrast to the proteolytically derived fragments of PTP1. Overexpression of PTP1 caused little apparent change in the rate of cell proliferation, but did induce changes in fibroblast morphology. A substantial increase in the proportion of bi- and multinucleate cells in PTP1-expressing cell populations was observed, and, in the case of the v-src-transformed cells, cell flattening and loss of refractibility occurred. Although no apparent difference in the tyrosine phosphorylation of pp60v-src was noted in v-src-transformed control and PTP1-overexpressing fibroblasts, the phosphotyrosine content of a 70-kD polypeptide was decreased in PTP1-overexpressing cells.  相似文献   

18.
Kang J  Bronson RT  Xu Y 《The EMBO journal》2002,21(6):1447-1455
Nijmegen breakage syndrome (NBS) is an autosomal recessive hereditary disease that shares some common defects with ataxia-telangiectasia. The gene product mutated in NBS, named NBS1, is a component of the Mre11 complex that is involved in DNA strand-break repair. To elucidate the physiological roles of NBS1, we disrupted the N-terminal exons of the NBS1 gene in mice. NBS1(m/m) mice are viable, growth retarded and hypersensitive to ionizing radiation (IR). NBS1(m/m) mice exhibit multiple lymphoid developmental defects, and rapidly develop thymic lymphoma. In addition, female NBS1(m/m) mice are sterile due to oogenesis failure. NBS1(m/m) cells are impaired in cellular responses to IR and defective in cellular proliferation. Most systematic and cellular defects identified in NBS1(m/m) mice recapitulate those in NBS patients, and are essentially identical to those observed in Atm(-/-) mice. In contrast to Atm(-/-) mice, spermatogenesis is normal in NBS1(m/m) mice, indicating that distinct roles of ATM have differential requirement for NBS1 activity. Thus, NBS1 and ATM have overlapping and distinct functions in animal development and DNA repair.  相似文献   

19.
20.
Autophagy is a membrane-trafficking process that serves to deliver cytoplasmic proteins and organelles to the lysosome for degradation. The process is genetically defined and many of the factors involved are conserved from yeast to man. Recently, a number of new autophagy regulators have been defined, including the Damage-Regulated Autophagy Modulator (DRAM), which is a lysosomal protein that links autophagy and the tumor suppressor, p53. We describe here analysis of DRAM-related proteins which reveals evolutionary conservation and divergence of DRAM’s role in autophagy. We report that humans have 5 other proteins that show significant homology to DRAM. The closest of these, which we have termed DRAM2, displays 45% identity and 67% conservation when compared to DRAM. Interestingly, although similar to DRAM in terms of homology, DRAM2 is different from DRAM as it not induced by p53 or p73. DRAM2 is also a lysosomal protein, but again unlike DRAM its over-expression does not modulate autophagy. In contrast to humans, the Drosophila genome only encodes one DRAM-like protein, which is approximately equal in similarity to human DRAM and DRAM2. This questions, therefore, whether DRAM function is conserved from fly to man or whether DRAM’s capacity to regulate autophagy has evolved in higher eukaryotes. Expression of DmDRAM, however, clearly revealed an ability to modulate autophagy. This points, therefore, to a conserved role of DRAM in this process and that additional human proteins have more recently evolved which, while potentially sharing some similarities to DRAM function, may not be as intrinsically connected to autophagy regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号