首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate Na+ binding to the ion-binding sites presented on the cytoplasmic side of the Na,K-ATPase, equilibrium Na+-titration experiments were performed using two fluorescent dyes, RH421 and FITC, to detect protein-specific actions. Fluorescence changes upon addition of Na+ in the presence of various Mg2+ concentrations were similar and could be fitted with a Hill function. The half-saturating concentrations and Hill coefficients determined were almost identical. As RH421 responds to binding of a Na+ ion to the third neutral site whereas FITC monitors conformational changes in the ATP-binding site or its environment, this result implies that electrogenic binding of the third Na+ ion is the trigger for a structural rearrangement of the ATP-binding moiety. This enables enzyme phosphorylation, which is accompanied by a fast occlusion of the Na+ ions and followed by the conformational transition E1/E2 of the protein. The coordinated action both at the ion and the nucleotide binding sites allows for the first time a detailed formulation of the mechanism of enzyme phosphorylation that occurs only when three Na+ ions are bound. Received: 8 October 1998/Revised: 29 December 1998  相似文献   

2.
A set of single-tryptophan mutants of the Na+/K+-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg2+ and/or ATP) binding. We introduced a novel method for the monitoring of the changes in the electrostatic surface potential (ESP) induced by ligand binding, using the quenching of the intrinsic tryptophan fluorescence by acrylamide or iodide. This approach opens a new way to understanding the interactions within the proteins. Our experiments revealed that the C45 conformation in the presence of the ATP (without magnesium) substantially differed from the conformation in the presence of Mg2+ or MgATP or in the absence of any ligand not only in the sense of geometry but also in the sense of the ESP. Notably, the set of ESP-sensitive residues was different from the set of geometry-sensitive residues. Moreover, our data indicate that the effect of the ligand binding is not restricted only to the close environment of the binding site and that the information is in fact transmitted also to the distal parts of the molecule. This property could be important for the communication between the cytoplasmic headpiece and the cation binding sites located within the transmembrane domain.  相似文献   

3.
Conformational changes of the Na+/K+-ATPase isolated large cytoplasmic segment connecting transmembrane helices M4 and M5 (C45) induced by the interaction with enzyme ligands (i.e. Mg2+ and/or ATP) were investigated by means of the intrinsic tryptophan fluorescence measurement and molecular dynamic simulations. Our data revealed that this model system consisting of only two domains retained the ability to adopt open or closed conformation, i.e. behavior, which is expected from the crystal structures of relative Ca2+-ATPase from sarco(endo)plasmic reticulum for the corresponding part of the entire enzyme. Our data revealed that the C45 is found in the closed conformation in the absence of any ligand, in the presence of Mg2+ only, or in the simultaneous presence of Mg2+ and ATP. Binding of the ATP alone (i.e. in the absence of Mg2+) induced open conformation of the C45. The fact that the transmembrane part of the enzyme was absent in our experiments suggested that the observed conformational changes are consequences only of the interaction with ATP or Mg2+ and may not be related to the transported cations binding/release, as generally believed. Our data are consistent with the model, where ATP binding to the low-affinity site induces conformational change of the cytoplasmic part of the enzyme, traditionally attributed to E2 → E1 transition, and subsequent Mg2+ binding to the enzyme-ATP complex induces in turn conformational change traditionally attributed to E1 → E2 transition.  相似文献   

4.
Sirtuin is a member of NAD+-dependent deacetylase family. The structural details of Sirtuin 2 (SIRT2) complex will be very useful to discover the drug which might have beneficial effects on various diseases like cancer, diabetes, etc. Unfortunately, SIRT2 complex structure is not available yet, hence molecular docking was carried out to dock the substrate (NAD+ and acetylated lysine) and inhibitor (sirtinol) in the NAD+ binding site. The suitable binding orientation of substrate and inhibitor in the SIRT2 active site was selected and subjected to 5?ns molecular dynamics simulations to adjust the binding orientation of inhibitor and substrate as well as to identify the conformational changes in the active site. The result provides an insight about 3D SIRT2 structural details as well as the importance of F96 in deacetylation function. In addition, our simulations revealed the displacement of F96 upon substrate and inhibitor binding, inducing an extended conformation of loop3 and changing its interactions with the rest of SIRT2. We believe that our study could be helpful to gain a structural insight of SIRT2 and to design the receptor-based inhibitors.  相似文献   

5.
Voltage-gated Na+ channels are dynamic transmembrane proteins responsible for the rising phase of the action potential in excitable membranes. Local anesthetics (LAs) and structurally related antiarrhythmic and anticonvulsant compounds target specific sites in voltage-gated Na+ channels to block Na+ currents, thus reducing excitability in neuronal, cardiac, or central nervous tissue. A high-affinity LA block is produced by binding to open and inactivated states of Na+ channels rather than to resting states and suggests a binding site that converts from a low- to a high-affinity conformation during gating. Recent findings using site-directed mutagenesis suggest that multiple S6 segments together form an LA binding site within the Na+ channel. While the selectivity filter may form the more extracellular-located part of this binding site, the role of the fast inactivation gate in LA binding has not yet been resolved. The receptor of the neurotoxin batrachotoxin (BTX) is adjacent to or even overlaps with the LA binding site. The close proximity of the LA and BTX binding sites to residues critical for inactivation, together with gating transitions through S6 segments, might explain the strong impact of LAs and BTX on inactivation of voltage-gated Na+ channels and might help elucidate the mechanisms underlying voltage- and frequency-dependent LA block.  相似文献   

6.
Homology modeling of the complete structure of the large cytoplasmic loop between the fourth and fifth transmembrane segments (H4–H5 loop) of the subunit of Na+/K+-ATPase is reported. The deduced amino acid sequence shows high sequence identity and homology to the Ca2+-ATPase (32.8% identity and 53.3% similarity in our alignment), whose tertiary structure has been solved recently at 2.6-Å resolution by X-ray crystallography. This high homology allowed the construction of a model structure using the MODELLER program. Refinement was achieved through interactive visual and algorithmic analysis and minimization with the TRIPOS force field included in the SYBYL/MAXIMIN2 module. The docking of ATP as a substrate into the active site of the model was explored with the AUTODOCK program followed by molecular mechanics optimization of the most interesting complexes. Thus, the docking of ATP into the resulting model of the H4–H5 loop gave evidence for the existence of one ATP binding site only. We were able to specify Cys549, Phe548, Glu505, Lys501, Gln482, Lys480, Ser477, Phe475 and Glu446 as parts of the ATP binding site with Lys501 located in the depth of the positively charged binding pocket.Electronic Supplementary Material available.  相似文献   

7.
Irradiation of G-quadruplex forming human telomeric DNA with ultraviolet B (UVB) light results in the formation of anti cyclobutane pyrimidine dimers (CPDs) between loop 1 and loop 3 in the presence of potassium ions but not sodium ions. This was unexpected because the sequences involved favor the nonphotoreactive hybrid conformations in K+ solution, whereas a potentially photoreactive basket conformation is favored in Na+ solution. To account for these contradictory results, it was proposed that the loops are too far apart in the basket conformation in Na+ solution but close enough in a two G-tetrad basket-like form 3 conformation that can form in K+ solution. In the current study, Na+ was still found to inhibit anti CPD formation in sequences designed to stabilize the form 3 conformation. Furthermore, anti CPD formation in K+ solution was slower for the sequence previously shown to exist primarily in the proposed photoreactive form 3 conformation than the sequence shown to exist primarily in a nonphotoreactive hybrid conformation. These results suggest that the form 3 conformation is not the principal photoreactive conformation, and that G-quadruplexes in K+ solution are dynamic and able to access photoreactive conformations more easily than in Na+ solution.  相似文献   

8.
Glutamate transporters (GluTs) are the primary regulators of extracellular concentration of the neurotransmitter glutamate in the central nervous system. In this study, we have investigated the dynamics and coupling of the substrate and Na+ binding sites, and the mechanism of cotransport of Na+ ions, using molecular dynamics simulations of a membrane-embedded model of GluT in its apo (empty form) and various Na+- and/or substrate-bound states. The results shed light on the mechanism of the extracellular gate and on the sequence of binding of the substrate and Na+ ions to GluT during the transport cycle. The results suggest that the helical hairpin HP2 plays the key role of the extracellular gate for the substrate binding site, and that the opening and closure of the gate is controlled by substrate binding. GluT adopts an open conformation in the absence of the substrate exposing the binding sites of the substrate and Na+ ions to the extracellular solution. Based on the calculated trajectories, we propose that Na1 is the first element to bind GluT, as it is found to be important for the completion of the substrate binding site. The subsequent binding of the substrate, in turn, is shown to result in an almost complete closure of the extracellular gate and the formation of the Na2 binding site. Finally, binding of Na2 locks the extracellular gate and completes the formation of the occluded state of GluT.  相似文献   

9.
BackgroundFor a large number of conopeptides basic knowledge related to structure-activity relationships is unavailable although such information is indispensable with respect to drug development and their use as drug leads.MethodsA combined experimental and theoretical approach employing electrophysiology and molecular modeling was applied for identifying the conopeptide δ-EVIA binding site at voltage-gated Na+ channels and to gain insight into the toxin's mode of action.ResultsConopeptide δ-EVIA was synthesized and its structure was re-determined by NMR spectroscopy for molecular docking studies. Molecular docking and molecular dynamics simulation studies were performed involving the domain IV voltage sensor in a resting conformation and part of the domain I S5 transmembrane segment. Molecular modeling was stimulated by functional studies, which demonstrated the importance of domains I and IV of the neuronal NaV1.7 channel for toxin action.Conclusionsδ-EVIA shares its binding epitope with other voltage-sensor toxins, such as the conotoxin δ-SVIE and various scorpion α-toxins. In contrast to previous in silico toxin binding studies, we present here in silico binding studies of a voltage-sensor toxin including the entire toxin binding site comprising the resting domain IV voltage sensor and S5 of domain I.General significanceThe prototypical voltage-sensor toxin δ-EVIA is suited for the elucidation of its binding epitope; in-depth analysis of its interaction with the channel target yields information on the mode of action and might also help to unravel the mechanism of voltage-dependent channel gating and coupling of activation and inactivation.  相似文献   

10.
We have performed detailed ab initio SCF calculations on the intermolecular interaction energies for one Na+ ion and one water molecule with two molecular fragments, one exemplifying a phospholipid (PL) head (PLHD) and the other, a phospholipid tail (PLTL). A 6-12-1 atom-atom pair potential for the interaction of a Na+ ion and water with a lysophosphatidyl-ethanolamine (LPEA) was derived from these results by a fitting procedure. This fitted potential was used to obtain isoenergy maps that provide energy profiles of the Na+ ion and the water around the phospholipids. The interaction of the Na+ ion with PL, as well as the interaction of water with the PL, can be visualized from these maps, which, as expected, show regions of hydrophilicity and hydrophobicity for the water and indicate a very strong binding site for the Na+ ion on the phosphate. It appears to be a stationary site that would limit the Na+ ion mobility. This binding site is located near the double-bonded oxygen atom of the phosphate group; its binding energy for Na+ is 67 kcal/mol. On the other hand the NH+ group of PLHD ahows strong electrostatic repulsion of Na+ while interacting with water with a binding energy of 13 kcal/mol. This potential energy well region for water is separated from another of similar depth near the phosphate by a barrier and both regions are expected to act as binding sites for water.  相似文献   

11.
The regulatory properties of thrombin are derived predominantly from its capacity to produce different functional conformations. Functional studies have revealed that two antagonistic thrombin conformations exist in equilibrium: the fast (procoagulant) and slow (anticoagulant) forms. The mechanisms whereby thrombin activity is regulated by the binding of different effectors remain among the most enigmatic and controversial subjects in the field of protein function. In order to obtain more detailed information on the dynamic events originating from the interaction with the Na+ effector and ligand binding at the active site and anion binding exosite 1 (ABE1), we carried out molecular dynamics simulations of thrombin in different bound states. The results indicated that Na+ release results in a more closed conformation of thrombin, which can be compared to the slow form. The conformational changes induced by displacement of the sodium ion from the Na-binding site include: (1) distortion of the 220- and 186-loops that constitute the Na-binding site; (2) folding back of the Trp148 loop towards the body of the protein, (3) a 180° rotation of the Asp189 side-chain, and (4) projection of the Trp60D loop toward the solvent accompanied by the rearrangement of the Trp215 side chain toward the 95–100 loop. Our findings correlate well with the known structural and recognition properties of the slow and fast forms of thrombin, and are in accordance with the hypothesis that there is communication between the diverse functional domains of thrombin. The theoretical models generated from our MD simulations complement and advance the structural information currently available, leading to a more detailed understanding of thrombin structure and function.  相似文献   

12.
We examine the role of Lys-377, the only charged residue in helix XI, on the functional mechanism of the Na+-sugar melibiose symporter from Escherichia coli. Intrinsic fluorescence, FRET, and Fourier transform infrared difference spectroscopy reveal that replacement of Lys-377 with either Cys, Val, Arg, or Asp disables both Na+ and melibiose binding. On the other hand, molecular dynamics simulations extending up to 200–330 ns reveal that Lys-377 (helix XI) interacts with the anionic side chains of two of the three putative ligands for cation binding (Asp-55 and Asp-59 in helix II). When Asp-59 is protonated during the simulations, Lys-377 preferentially interacts with Asp-55. Interestingly, when a Na+ ion is positioned in the Asp-55-Asp-59 environment, Asp-124 in helix IV (a residue essential for melibiose binding) reorients and approximates the Asp-55-Asp-59 pair, and all three acidic side chains act as Na+ ligands. Under these conditions, the side chain of Lys-377 interacts with the carboxylic moiety of these three Asp residues. These data highlight the crucial role of the Lys-377 residue in the spatial organization of the Na+ binding site. Finally, the analysis of the second-site revertants of K377C reveals that mutation of Ile-22 (in helix I) preserves Na+ binding, whereas that of melibiose is largely abolished according to spectroscopic measurements. This amino acid is located in the border of the sugar-binding site and might participate in sugar binding through apolar interactions.  相似文献   

13.
(1) Eosin bound to the (Na+ + K+)-ATPase in the presence of K+ has practically the same fluorescence as eosin without enzyme while in the presence of Na+ the fluorescence is higher, the excitation maximum is shifted from 518 to 524 nm, the emission maximum from 538 to 542 nm, and a shoulder appears at about 490 nm on the excitation curve. (2) The amount of eosin bound increases with the K+ concentration but with a low affinity. With equal concentrations of Na+ and K+ more is bound in the presence of Na+, and the difference between 150 mM Na+ and 150 mM K+ shows one high-affinity eosin binding site per 32P-labelling site (KD 0.45 μM). With lower concentrations of the cations there are between one and two Na+-dependent high-affinity eosin binding sites per 32P-labelling site. (3) ATP (and ADP) prevents the hig-affinity Na+-dependent eosin binding and there is competition between eosin and ATP for the hydrolysis in the presence of Na+ (+Mg2+). (4) Eosin, like ATP, increases the Na+ relative to K+ affinity (Na+ + K+ = 150 mM) for Na+ activation of hydrolysis and for Na+ protection against inactivation by N-ethylmaleimide. (5) The results suggest that the high affinity eosin binding site is an ATP binding site and that it is located on the enzyme in an environment with a low polarity, i.e., the conformational change induced by Na+ opens a high-affinity site for ATP while K+ closes the site (or decreases the affinity to a low level). The experiments suggest, furthermore, that the ATP which increases the Na+ relative to K+ affinity of the internal sites is not the ATP which is hydrolyzed, i.e., in a turnover cycle in the presence of Na+ + K+ the system reacts with two different ATP molecules.  相似文献   

14.
Carbamazepine, phenytoin, and lamotrigine are widely prescribed anticonvulsants in neurological clinics. These drugs bind to the same receptor site, probably with the diphenyl motif in their structure, to inhibit the Na+ channel. However, the location of the drug receptor remains controversial. In this study, we demonstrate close proximity and potential interaction between an external aromatic residue (W1716 in the external pore loop) and an internal aromatic residue (F1764 in the pore-lining part of the sixth transmembrane segment, S6) of domain 4 (D4), both being closely related to anticonvulsant and/or local anesthetic binding to the Na+ channel. Double-mutant cycle analysis reveals significant cooperativity between the two phenyl residues for anticonvulsant binding. Concomitant F1764C mutation evidently decreases the susceptibility of W1716C to external Cd2+ and membrane-impermeable methanethiosulfonate reagents. Also, the W1716E/F1764R and G1715E/F1764R double mutations significantly alter the selectivity for Na+ over K+ and markedly shift the activation curve, respectively. W1716 and F1764 therefore very likely form a link connecting the outer and inner compartments of the Na+ channel pore (in addition to the selectivity filter). Anticonvulsants and local anesthetics may well traverse this “S6 recess” without trespassing on the selectivity filter. Furthermore, we found that Y1618K, a point mutation in the S3-4 linker (the extracellular extension of D4S4), significantly alters the consequences of carbamazepine binding to the Na+ channel. The effect of Y1618K mutation, however, is abolished by concomitant point mutations in the vicinity of Y1618, but not by those in the internally located inactivation machinery, supporting a direct local rather than a long-range allosteric action. Moreover, Y1618 could interact with D4 pore residues W1716 and L1719 to have a profound effect on both channel gating and anticonvulsant action. We conclude that there are direct interactions among the external S3-4 linker, the external pore loop, and the internal S6 segment in D4, making the external pore loop a pivotal point critically coordinating ion permeation, gating, and anticonvulsant binding in the Na+ channel.  相似文献   

15.
Potassium channels allow the selective flux of K+ excluding the smaller, and more abundant in the extracellular solution, Na+ ions. Here we show that Shab is a typical K+ channel that excludes Na+ under bi-ionic, Nao/Ki or Nao/Rbi, conditions. However, when internal K+ is replaced by Cs+ (Nao/Csi), stable inward Na+ and outward Cs+ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca2+ ions, and compare the effect that internal K+ replacement exerts on both Ca2+ and TEA block. Our observations indicate that Ca2+ blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na+ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca2+ is probably coordinated by main chain carbonyls of the pore´s first K+-binding site.  相似文献   

16.
Sodium- and potassium-activated adenosine triphosphatases (Na,K-ATPase) is the ubiquitous active transport system that maintains the Na+ and K+ gradients across the plasma membrane by exchanging three intracellular Na+ ions against two extracellular K+ ions. In addition to the two cation binding sites homologous to the calcium site of sarcoplasmic and endoplasmic reticulum calcium ATPase and which are alternatively occupied by Na+ and K+ ions, a third Na+-specific site is located close to transmembrane domains 5, 6 and 9, and mutations close to this site induce marked alterations of the voltage-dependent release of Na+ to the extracellular side. In the absence of extracellular Na+ and K+, Na,K-ATPase carries an acidic pH-activated, ouabain-sensitive “leak” current. We investigated the relationship between the third Na+ binding site and the pH-activated current. The decrease (in E961A, T814A and Y778F mutants) or the increase (in G813A mutant) of the voltage-dependent extracellular Na+ affinity was paralleled by a decrease or an increase in the pH-activated current, respectively. Moreover, replacing E961 with oxygen-containing side chain residues such as glutamine or aspartate had little effect on the voltage-dependent affinity for extracellular Na+ and produced only small effects on the pH-activated current. Our results suggest that extracellular protons and Na+ ions share a high field access channel between the extracellular solution and the third Na+ binding site.  相似文献   

17.
Membrane-bound (Na+ + K+)-ATPase from pig kidney outer medulla shows apparent heterogeneity in its ATP-binding site population when assays are carried out in the presence of K+. This finding has been interpreted as being due to interaction between (at least) two subunits, each containing an ATP-binding site. Treating the membrane-bound enzyme with the detergent, C12E8, has been shown to solubilize enzymatically active αβ-protomers. We show that in the dissolved enzyme all ATP-binding sites in the population are identical both in the absence and in the presence of K+, which would be consistent with an abolition of subunit-subunit interaction. This supports previous suggestions that enzyme solubilized by C12E8 is monomeric and that the membrane-bound enzyme is not. Differential extraction of enzyme-containing membranes with C12E8 yielded preparations with an ATP-binding capacity of up to 5.8 nmol per mg protein, measured by the method of Lowry et al. (Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) J. Biol. Chem. 193, 265–275), with bovine serum albumin as standard. Evidence is presented that makes it likely that preparations with an ATP-binding capacity of 7.5 nmol per mg protein (as determined by the above-mentioned assay) will be obtainable. This corresponds to an αβ-protomer molecular weight of 133 000 which approximates closely to the minimum value found in the literature for an αβ-protomer (i.e., 126 000).  相似文献   

18.
MATE (multidrug and toxic compound extrusion) transporter proteins mediate metabolite transport in plants and multidrug resistance in bacteria and mammals. MATE transporter NorM from Vibrio cholerae is an antiporter that is driven by Na+ gradient to extrude the substrates. To understand the molecular mechanism of Na+‐substrate exchange, molecular dynamics simulation was performed to study conformational changes of both wild‐type and mutant NorM with and without cation bindings. Our results show that NorM is able to bind two Na+ ions simultaneously, one to each of the carboxylic groups of E255 and D371 in the binding pocket. Furthermore, this di‐Na+ binding state is likely more efficient for conformational changes of NorM_VC toward the inward‐facing conformation than single‐Na+ binding state. The observation of two Na+ binding sites of NorM_VC is consistent with the previous study that two sites for ion binding (denoted as Na1/Na2 sites) are found in the transporter LeuT and BetP, another two secondary transporters. Taken together, our findings shed light on the structure rearrangements of NorM on Na+ binding and enrich our knowledge of the transport mechanism of secondary transporters. Proteins 2014; 82:240–249. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1'' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1'' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1'' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10.  相似文献   

20.
Abstract: The present study examines the interaction of Na+ and K+ with the binding of the cocaine analogue 3β-(4-[125I]iodophenyl)tropane-2β-carboxylic acid isopropyl ester to dopamine transporters (DATs) in rat striatal synaptosomal membranes at 37°C. The binding increases with [Na+] from 10 to 100 mM and decreases with higher [Na+]. The presence of K+ reduces the maximal stimulatory effect of Na+ and causes a nonlinear EC50 shift for Na+. K+ strongly inhibits the binding at low [Na+]. Increasing [Na+] produces a linear IC50 shift for K+. Saturation analysis indicates a single binding site changing its affinity for the radioligand depending on [K+]/[Na+] ratio in the assay buffer. A reduced Bmax was observed in the presence of 10 mM Na+ and 30 mM K+. Both high [Na+] and high [K+] accelerate the dissociation of the binding, and K+-induced acceleration was abolished by increasing [Na+]. Least squares model fitting of equilibrium data and kinetic analysis of dissociation rates reveal competitive interactions between Na+ and K+ at two sites allosterically linked on the DAT: One site mediates the stimulatory effect of Na+, and the other site involves the radioligand binding and the inhibitory effect of cations on the binding. Various uptake blockers and substrates, dopamine in particular, display reduced potency in inhibiting the binding at a higher [K+]/[Na+] ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号