首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
上皮间质转化(epithelial-mesenchymal transition,EMT)与肿瘤侵袭转移密切相关.虽然肝细胞生长因子(hepatocyte growth factor,HGF)已被证实为肿瘤EMT的主要诱导剂,但是HGF诱导肿瘤EMT发生的分子机制尚不完全清楚.本研究旨在探讨Snail在HGF诱导肝癌细胞上皮间质转化中的作用.用HGF处理肝癌HepG2和Hep3B细胞,显微镜观察细胞形态变化,划痕试验及Transwell试验检测细胞迁移能力,Western印迹检测Met,AKT的磷酸化及蛋白质表达的变化,Western印迹与real-time RT-PCR检测上皮细胞表面标志E-Cadherin和间质细胞表面标志N-Cadherin、Fibronectin的表达变化,以及EMT相关转录因子的表达变化.经HGF处理的HepG2、Hep3B细胞,Met和AKT的磷酸化水平显著增强;相差倒置显微镜下观察细胞形态向间质型细胞形态转化;细胞划痕和Transwell试验检测细胞的迁移能力较对照组显著增强;Real-time RT-PCR和Western印迹实验显示HGF的诱导能上调间质标记蛋白的表达及下调上皮型标志蛋白的表达.进一步发现,HGF能上调转录因子Snail的表达,干扰Snail能逆转HGF对HepG2和Hep 3B细胞EMT发生的诱导作用.由此可见,HGF可能通过诱导Snail的表达促进肝癌细胞EMT的发生.这为阐明肝癌细胞侵袭转移机制,以及肝癌的防治提供新线索.  相似文献   

2.
3.
4.
5.
6.
7.
Subcapsular cataracts are common phenotype of diabetic cataracts, and abnormal lens epithelial cells (LECs) under the lens capsules have been considered to involve in the pathogenesis. Our previous studies have shown that the epithelial to mesenchymal transition (EMT), which is responsible for the LECs to lose their original polarity and tight junctions, occurs in a diabetic cataract mouse model. Autophagy is known to function in the EMT process in multiple tissues. However, the relationship between autophagy and EMT process in LECs has not yet been fully demonstrated. We found that high glucose retreatment reducing expression level of E-cadherin, an epithelial marker, but increasing that of α-smooth muscle actin (α-SMA), a mesenchymal marker, by Western blot and immunoflurence staining assays, and increased the cell migration by Transwell assay in human lens epithelial cell line HLE-B3. High glucose retreatment also led to impairment of autophagy, representing by downregulation of Beclin, LC3II/LC3I, and reducing the number of autophagosomes. Activation of autophagy by rapamycin could prevent high glucose-induced EMT. In addition, the levels of p62 and Snail were increased in high glucose-treated HLE-B3 cells, and their interactions were demonstrated by co-immunoprecipitation and immunoflurence staining, but all these changes were attenuated by application of rapamycin. These findings delineated a novel autophagy-mediated mechanism, p62 might mediate Snail underlying high glucose-induced EMT in LECs, suggesting a potential therapeutic approach for diabetic cataract by regulating autophagy.  相似文献   

8.
《Cellular signalling》2014,26(4):757-765
Since its discovery in biopsies from breast cancer patients, the effect of corticotropin-releasing hormone (CRH) on carcinoma progression is still unclear. Transforming growth factorβ1 (TGFβ1) promotes Epithelial–Mesenchymal Transition (EMT) and induces Snail1 and Twist1 expressions. Loss of epithelial cadherin (E-cadherin) mainly repressed by Snail1 and Twist1, has been considered as hallmark of Epithelial–Mesenchymal Transition (EMT). Two breast cancer cell lines, MCF-7 and MDA-MB-231 were used to investigate the effect of CRH on TGFβ1-induced EMT by transwell chamber. And HEK293 cells were transiently transfected with CRHR1 or CRHR2 to explore the definite effects of CRH receptor. We reported that CRH inhibited migration of human breast cancer cells through downregulation of Snail1 and Twist1, and subsequent upregulation of E-cadherin. CRH inhibited TGFβ1-mediated migration of MCF-7 via both CRHR1 and CRHR2 while this inhibition in MDA-MB-231 was mainly via CRHR2. Ectopic re-expression of CRHR1 or CRHR2 respectively in HEK293 cells increased E-cadherin expression after CRH stimulation. Furthermore, CRH repressed expression of mesenchymal marker, N-cadherin and induced expression of Occludin, inhibiting EMT in MCF-7 & MDA-MB-231. Our results suggest that CRH may function as a tumor suppressor, at least partly by regulating TGFβ1-mediated EMT. These results may contribute to uncovering the effect of CRH in breast tumorigenesis and progression.  相似文献   

9.
10.
11.
12.
13.
14.
目的观察转化生长因子-β1(TGF-β1)对人胃癌细胞株AGS发生上皮-间充质转化(epithelial-mesenchymal transition,EMT)及体外侵袭的影响。方法将体外培养的AGS用TGF-β1干预后,倒置显微镜下观察细胞形态学的变化,MTT比色法检测TGF-β1对AGS增殖的影响,细胞划痕试验和Transwell侵袭试验检测细胞运动和侵袭力的改变;免疫荧光和Western blot检测snail、E-cadherin(上皮钙粘蛋白)、和N-cadherin(神经钙粘蛋白)表达的变化。结果TGF-β1诱导AGS向间充质细胞形态转化,低浓度促进细胞增殖,而高浓度时细胞增殖率逐步降低,且snail和间充质细胞表型N-cadherin表达上调,而上皮细胞表型E-cadherin表达下调,同时细胞运动和侵袭能力大大增强。结论TGF-β1可诱导AGS发生EMT,从而增加其侵袭、转移的能力。  相似文献   

15.
16.
17.
In polycystic kidney disease (PKD), cyst lining cells show polarity abnormalities. Recent studies have demonstrated loss of cell contact in cyst cells, suggesting induction of epithelial-to-mesenchymal transition (EMT). Recently, EMT has been implicated in the pathogenesis of PKD. To explore further evidence of EMT in PKD, we examined age- and segment-specific expression of adhesion molecules and mesenchymal markers in PCK rats, an orthologous model of human autosomal-recessive PKD. Kidneys from 5 male PCK and 5 control rats each at 0 days, 1, 3, 10, and 14 wk, and 4 mo of age were serially sectioned and stained with segment-specific markers and antibodies against E-cadherin, Snail1, β-catenin, and N-cadherin. mRNAs for E-cadherin and Snail1 were quantified by real-time PCR. Vimentin, fibronectin, and α-smooth muscle actin (α-SMA) expressions were assessed as mesenchymal markers. E-cadherin expression pattern was correlated with the disease pathology in that tubule segments showing the highest expression in control had much severer cyst formation in PCK rats. In PCK rats, E-cadherin and β-catenin in cystic tubules was attenuated and localized to lateral areas of cell-cell contact, whereas nuclear expression of Snail1 increased in parallel with cyst enlargement. Some epithelial cells in large cysts derived from these segments, especially in adjacent fibrotic areas, showed positive immunoreactivity for vimentin and fibronectin. In conclusion, these findings suggest that epithelial cells in cysts acquire mesenchymal features in response to cyst enlargement and participate in progressive renal fibrosis. Our study clarified the nephron segment-specific cyst profile related to EMT in PCK rats. EMT may play a key role in polycystic kidney disease.  相似文献   

18.
19.
20.
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions and cell polarity, resulting in the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process in head and neck cancers are poorly understood. Increasing evidence suggests that tumor microenvironment plays an important role in promoting EMT in tumor cells. We have previously shown that head and neck tumors exhibit significantly higher Bcl-2 expression in tumor-associated endothelial cells and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a severe combined immunodeficient (SCID) mouse model. In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when cocultured with head and neck tumor cells (CAL27), significantly enhance EMT-related changes in tumor cells predominantly by the secretion of IL-6. Treatment with recombinant IL-6 or stable IL-6 overexpression in CAL27 cells or immortalized oral epithelial cells (IOE) significantly induced the expression of mesenchymal marker, vimentin, while repressing E-cadherin expression via the JAK/STAT3/Snail signaling pathway. These EMT-related changes were further associated with enhanced tumor and IOE cell scattering and motility. STAT3 knockdown significantly reversed IL-6-mediated tumor and IOE cell motility by inhibiting FAK activation. Furthermore, tumor cells overexpressing IL-6 showed marked increase in lymph node and lung metastasis in a SCID mouse xenograft model. Taken together, these results show a novel function for IL-6 in mediating EMT in head and neck tumor cells and increasing their metastatic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号