首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yuan G  Wang C  Ma C  Chen N  Tian Q  Zhang T  Fu W 《PloS one》2012,7(3):e34004
The Wnt/β-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/β-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of β-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of β-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated β-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3β and β-catenin. DACT1 stabilizes β-catenin via DACT1-induced effects on GSK-3β and directly interacts with β-catenin proteins. The level of phosphorylated GSK-3β at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of β-catenin via increasing the level of phosphorylated GSK-3β at Ser9 to inhibit the activity of GSK-3β. Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the β-catenin-dependent pathway.  相似文献   

2.
3.
Abstract

The metastasis-associated gene 1 (MTA1) has previously been recognized as an oncogene, and abnormal MTA1 expression has been related to progression of numerous cancer types to the metastasis stage. However, the function of MTA1 in the regulation of pancreatic cancer progression and metastasis remains unclear. Western blot analysis was adopted to determine the expression of MTA1 in pancreatic cancer tissues and corresponding near normal tissues. Steady clone with MTA1-overexpression and MTA1-inhibitionweregenerated via lentivirus technology in BxPc-3 cells. Transwell assay was carried out for detecting the invasion of pancreatic cancer cells. The migration activity was assessed using the wound scratch assay. The effect of MTA1 in pancreatic cancer was evaluated in the mice xenografts. Western blot analysis was employed to determine the expression of hypoxia inducible factor-α (HIF-α) and vascular endothelial growth factor (VEGF) in vitro and in vivo. We observed that MTA1 overexpression enhanced migration and invasion ability of pancreatic cancer cells in vitro and increased HIF-α and VEGF protein levels in vitro and in vivo. MTA1 inhibition had the opposite effects. MTA1 protein level was positively related to HIF-α and VEGF protein levels. These results indicated that MTA1 potentially promoted pancreatic cancer metastasis via HIF-α/VEGF pathway. This research supplies a new molecular mechanism for MTA1 in the pancreatic cancer progression and metastasis. MTA1 may be an effective therapy target in pancreatic cancer.  相似文献   

4.
A variety of pathologies such as skeletal fracture, neoplasia and inflammation compromise tissue perfusion and thereby decrease tissue oxygen tension. We and others have demonstrated that hypoxia is a potent stimulant for MSC (mesenchymal stem cell) recruitment and differentiation, yet to date little research has focused on the effects of oxygen tension on MSC migration. In the present study, we examined the effects of hypoxia and the potential role of the GTPase RhoA and HIF-1α (hypoxia-inducible factor 1α) on MSC migration. Our results demonstrate that hypoxia decreases MSC migration through an HIF-1α and RhoA-mediated pathway. The active GTP-bound form of RhoA was reduced in 1% oxygen, whereas activation of RhoA under hypoxic conditions rescued migration. Furthermore, stabilization of HIF-1α under normoxic conditions attenuated cell migration similar to that of hypoxia. These results suggest that hypoxia negatively affects MSC migration by regulating activation of GTPases. These results highlight the importance of oxygen in regulating the recruitment of progenitor cells to areas of ischaemic tissue damage.  相似文献   

5.
The COVID-19 pandemic led to the delay of colorectal cancer (CRC) diagnosis, which causes CRC to be treated at more advanced, often metastatic stages. Unfortunately, there is no effective treatment for metastatic CRC stages, which are considered the leading cause of patients' death. The mortality induced by SARS-CoV-2 is significantly higher in cancer patients than in patients with other diseases. Interestingly, COVID-19 patients often develop fibrosis which depends on epithelial-mesenchymal transition (EMT) – the process also involved in cancer progression. The study aimed to verify whether SARS-CoV-2 induces EMT and consequently increases the invasion potential of colon cancer cells.CRC cells were stimulated with SARS-CoV-2 S and N protein peptides and epithelial and mesenchymal markers were analysed with Western blotting to detect the occurrence of the EMT. The migration, invasion assays and MMP-7 secretion were employed to evaluate the potential of SARS-CoV-2 to stimulate the cells invasion in vitro. ELISA assay, TGF-β1 neutralizing antibodies, TGF-βR silencing and inhibitors were used to investigate the role of the TGF-β1 signalling pathways in the SARS-CoV-2-dependent CRC stimulation.The SARS-CoV-2 induced EMT, which increased the invasion ability of CRC cells. Moreover, the SARS-CoV-2 proteins drive colon cancer cell invasion through TGF-β1. Additionally, secreted TGF-β1 induced a bystander effect in colon cancer cells. However, blocking TGF-β1/Smad- and -non-Smad-dependent pathways suppressed the SARS-CoV-2-induced invasiveness of CRC. In conclusion, we revealed that SARS-CoV-2 stimulates the invasion abilities of CRC by regulating TGF-β1-induced EMT. Our results provide a theoretical basis for using anti-TGF-β1 therapy to reduce the risk of CRC metastasis during SARS-CoV-2 infection.  相似文献   

6.
Although endoplasmic reticulum (ER) stress induction by some anticancer drugs can lead to apoptotic death of cancer cells, combination therapy with other chemicals would be much more efficient. It has been reported that proteasome inhibitors could induce cancer cell death through ER-stress. Our study, however, showed a differential mechanism of proteasome inhibitor-I (Pro-I)-induced cell death. Pro-I significantly enhanced apoptotic death of PC3 prostate cancer cells pretreated with tunicamycin (TM) while other signaling inhibitors against p38, mitogen activated kinase (MEK) and phosphatidyl-inositol 3-kinase (PI3K) did not, as evidenced by cell proliferation and cell cycle analyses. NF-κB inhibition by Pro-I, without direct effect on ER-stress, was found to be responsible for the TM-induced chemosensitization of PC3 cells. Moreover, TM-induced/enhancer-binding protein (C/EBP) homologous protein (CHOP) expression was enhanced by Pro-I without change in GRP78 expression. CHOP knockdown by siRNA also showed a significant decrease in Pro-I chemosensitization. All these data suggest that although TM could induce both NF-κB activation and CHOP expression through ER-stress, both NF-κB inhibition and increased CHOP level by Pro-I are required for enhanced chemosensitization of PC3 prostate cancer cells. Thus, our study might contribute to the identification of anticancer targets against prostate cancer cells.  相似文献   

7.
8.
9.
Dong X  Wang YS  Dou GR  Hou HY  Shi YY  Zhang R  Ma K  Wu L  Yao LB  Cai Y  Zhang J 《PloS one》2011,6(4):e18481
Choroidal neovascularization (CNV) is the common pathological basis of irreversible visual impairment encountered in a variety of chorioretinal diseases; the pathogenesis of its development is complicated and still imperfectly understood. Recent studies indicated that delta-like ligand 4 (Dll4), one of the Notch family ligands might participate in the HIF-1α-VEGF pathway to regulate CNV angiogenesis. But little is known about the influence and potential mechanism of Dll4/Notch signals on CNV angiogenesis. Real-time RT-PCR, Western blotting were used to analyze the expression alteration of Dll4, VEGF and HIF-1α in hypoxic RF/6A cells. Immunofluorescence staining, a laser-induced rat CNV model and intravitreal injection techniques were used to confirm the relationships among these molecules in vitro and in vivo. RPE-RF/6A cell co-culture systems were used to investigate the effects of Dll4/Notch signals on CNV angiogenesis. We found that the Dll4 was involved in hypoxia signaling in CNV angiogenesis. Results from the co-culture system showed that the enhancement of Dll4 expression in RF/6A cells led to the significantly faster proliferation and stronger tube forming ability, but inhibited cells migration and invasion across a monolayer of RPE cells in hypoxic environment, while siRNA-mediated Dll4 silencing caused the opposite effects. Pharmacological disruption of Notch signaling using gamma-secretase inhibitor (GSI) produced similar, but not identical effects, to that caused by the Dll4 siRNA. In addition, the expression of several key molecules involved in the angiogenesis of CNV was altered in RF/6A cells showing constitutively active Dll4 expression. These results suggest that Dll4 play an important role in CNV angiogenesis, which appears to be regulated by HIF-1α and VEGF during the progression of CNV under hypoxic conditions. Targeting Dll4/Notch signaling may facilitate further understanding of the mechanisms that underlie CNV angiogenesis.  相似文献   

10.
11.
12.
13.
14.
Aminopeptidase A (APA; EC 3.4.11.7) is a transmembrane metalloprotease with several functions in tumor angiogenesis. To investigate the role of APA in the process of ischemia-induced angiogenesis, we evaluated the cellular angiogenic responses under hypoxic conditions and the process of perfusion recovery in the hindlimb ischemia model of APA-deficient (APA-KO; C57Bl6/J strain) mice.Western blotting of endothelial cells (ECs) isolated from the aorta of APA-KO mice revealed that the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein in response to hypoxic challenge was blunted. Regarding the proteasomal ubiquitination, a proteasome inhibitor MG-132 restored the reduced accumulation of HIF-1α in ECs from APA-KO mice similar to control mice under hypoxic conditions. These were associated with decreased growth factor secretion and capillary formation in APA-KO mice. In the hindlimb ischemia model, perfusion recovery in APA-KO mice was decreased in accordance with a significantly lower capillary density at 2 weeks. Regarding vasculogenesis, no differences were observed in cell populations and distribution patterns between wild type and APA-KO mice in relation to endothelial progenitor cells.Our results suggested that Ischemia-induced angiogenesis is impaired in APA-KO mice partly through decreased HIF-1α stability by proteasomal degradation and subsequent suppression of HIF-1α-driven target protein expression such as growth factors. APA is a functional target for ischemia-induced angiogenesis.  相似文献   

15.
16.

Objectives

To explore the effect of placenta-derived mesenchymal stem cells on scar formation as well as the underlying mechanism.

Results

The isolated placenta-derived mesenchymal stem cells from mice were distributed in the wounded areas of scalded mouse models, attenuated inflammatory responses and decreased the deposition of collagens, thus performing a beneficial effect against scar formation. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells and hypoxia-inducible factor-1α was involved in the protective effect of placenta-derived mesenchymal stem cells in hypoxic condition.

Conclusions

Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells through hypoxia-inducible factor-1α and PMSCs may have a potential application in the treatment of wound.
  相似文献   

17.
Therapeutic angiogenesis is critical to wound healing and ischemic diseases such as myocardial infarction and stroke. For development of therapeutic agents, a search for new angiogenic agents is the key. Ferulic acid, a phytochemical found in many fruits and vegetables, exhibits a broad range of therapeutic effects on human diseases, including diabetes and cancer. This study investigated the augmenting effect of ferulic acid on angiogenesis through functional modulation of endothelial cells. Through endothelial cell migration and tube formation assays, ferulic acid (10?6–10?4 M) was found to induce significant angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro without cytotoxicity. With chorioallantoic membrane assay, ferulic acid (10?6–10?5 M) was also found to promote neovascularization in vivo. Using Western blot analysis and quantitative real-time polymerase chain reaction, we found that ferulic acid increased vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression in HUVECs. Furthermore, the amounts of hypoxic-induced factor (HIF) 1α mRNA and protein, the major regulator of VEGF and PDGF, also showed up-regulation by ferulic acid. Electrophoretic migration shift assay showed that the binding activity of HIF-1α was also enhanced with ferulic acid treatment of HUVECs. Moreover, inhibitors of extracellular-signal-regulated kinase 1/2 and phosphoinositide-3 kinase (PI3K) abolished the binding activity of HIF-1α and the subsequent activation of VEGF and PDGF production by ferulic acid. Thus, both mitogen-activated protein kinase and PI3K pathways were involved in the angiogenic effects of ferulic acid. Taken together, ferulic acid serves as an angiogenic agent to augment angiogenesis both in vitro and in vivo. This effect might be observed through the modulation of VEGF, PDGF and HIF-1α.  相似文献   

18.
19.
Vascularized tumors are exposed to intermittent hypoxia, that is, hypoxia followed by periods of reoxygenation. Abnormal structure and dysfunction of tumor blood vessels are responsible for these conditions. These repeated short periods of hypoxia concern tumor cells as well as endothelial cells. However, the effects of intermittent hypoxia are poorly understood. The aim of this study was to investigate the effects of intermittent hypoxia on endothelial cells and particularly on HIF-1α, a central actor in adaptive response to hypoxia. For that, endothelial cells were exposed to four repeated cycles of 1-h hypoxia followed by 30 min of reoxygenation. We showed that repeated cycles of hypoxia/reoxygenation induced a modification in HIF-lα phosphorylation pattern: a progressive increase in HIF-1α phosphorylated form was observed during the hypoxic periods. Activation of p42/p44, Akt and PKA was observed in parallel. PKA was shown to be involved in the phosphorylation of HIF-lα under intermittent hypoxia, while p42/p44 and Akt were not. As HIF-1 activity is often associated with enhanced cell survival, a better knowledge of the effects of intermittent hypoxia on endothelial cells and the highlight of particular mechanisms induced by intermittent hypoxia are essential to understand the behavior of endothelial cells during neo-angiogenesis.  相似文献   

20.
Silibinin is a polyphenolic flavonoid isolated from the milk thistle (Silybum marianum) and is reported to exhibit anticancer properties. Recently, it has been reported that silibinin inhibits hypoxia-inducible factor-1α (HIF-1α) expression in cancer cells. However, the precise mechanism by which silibinin decreases HIF-1 expression is not fully understood. In this study, silibinin inhibited basal and hypoxia induced expression levels of HIF-1α protein in LNCaP and PC-3 prostate cancer cells, while the rate of HIF-1α protein degradation and mRNA levels were not affected. We found that the decrease in HIF-1 protein by silibinin correlated with suppression of de novo synthesis of HIF-1α protein. Silibinin inhibited global protein synthesis coincided with reduction of eIF4F complex formation and induction of phosphorylation of the translation initiation factor 2α (eIF-2α) which can cause inhibition of general protein synthesis. These results suggest that silibinin’s activity to inhibit HIF-1α protein expression is associated with the suppression of global protein translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号