首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gene》1998,208(1):25-30
In a previous large-scale screening for differentially expressed genes in pancreatic cancer, a gene was identified that was highly overexpressed in pancreatic cancer encoding a novel putative tetraspan transmembrane protein highly homologous to the tumour-associated antigen L6. Using a radiation hybrid panel the identified human gene named TM4SF5 (transmembrane 4 superfamily member 5) was localized to chromosome 17 in the region 17p13.3. The cloned TM4SF5 cDNA has a 32 bp 5′-untranslated region (UTR), a 591 bp openreading frame (ORF) and a 85 bp 3′UTR. The predicted TM4SF5 protein with 197 amino acids contains three NH2-terminal hydrophobic transmembrane regions, followed by an extracellular hydrophilic domain containing two potential N-linked glycosylation sites and a COOH-terminal hydrophobic transmembrane region. These structural features are shared by the L6 antigen and a number of related cell surface proteins associated with cell growth. TM4SF5 was overexpressed in pancreatic cancer tissues as compared to both normal pancreas and chronic pancreatitis tissues, and was detected at high levels in other tumour tissues. Although the precise function of TM4SF5 remains to be elucidated it may be useful in a clinical setting for tumour diagnosis and/or therapy. This hypothesis is supported by the strong homology to the L6 antigen, which has proved promising in immunological, therapeutic and diagnostic approaches.  相似文献   

2.
《Cancer epidemiology》2014,38(4):408-413
Background and aimPrevious evidence has shown that microRNA (miR)-224 may function as an onco-miRNA in hepatocellular carcinoma (HCC) cells by activating AKT signaling. However, little is known about the clinical significance of the combined expression of miR-224 and phosphorylated-AKT (pAKT) on human HCC. The aim of this study was to investigate the synergistical influence of miR-224 and pAKT on clinical characteristics and prognosis in patients with HCC.MethodsOne-hundred and thirty HCC patients who had undergone curative liver resection were selected. In situ hybridization and immunohistochemistry were respectively performed to detect the expression of miR-224 and pAKT in the respective tumors.ResultsCompared with the adjacent nonneoplastic liver tissues, the expression levels of miR-224 and pAKT protein in HCC tissues were both significantly increased (both P < 0.001). In addition, the combined upregulation of miR-224 and pAKT protein was significantly associated with serum AFP (P = 0.01), tumor stage (P = 0.002) and tumor grade (P = 0.008). Moreover, HCC patients highly expressing both miR-224 and pAKT protein had worse 5-year disease-free survival and 5-year overall survival (both P < 0.001). Furthermore, the Cox proportional hazards model showed that the combined upregulation of miR-224 and pAKT protein (miR-224-high/pAKT-high) may be independent poor prognostic factors for both 5-year disease-free survival (P = 0.008) and 5-year overall survival (P = 0.01) in HCC.ConclusionThese results indicate for the first time that miR-224 upregulation and AKT activation may synergistically associate with tumor progression of HCC. The combined high expression of miR-224 and pAKT may be a potential indicator for predicting unfavorable prognosis in HCC patients.  相似文献   

3.
The possible role for DNA repair deficiencies in cancer development, namely in breast cancer has been the subject of increasing interest since it has been reported that breast cancer patients might be deficient in the repair of DNA damage. Exposure to ionizing radiation has been pointed out as a risk factor for breast cancer, and the type of DNA lesions induced by this carcinogen can be repaired by homologous recombination DNA repair (HRR) pathway. To evaluate the potential modifying role of some single nucleotide polymorphisms (SNP) in HRR involved genes on the individual susceptibility to breast cancer we carried out a hospital based case–control study in a Caucasian Portuguese population (289 histological confirmed breast cancer patients and 548 control individuals). We genotyped 4 SNPs in 4 different HRR pathway genes, XRCC2 (Ex3 + 442G > A, R188H, rs3218536), XRCC3 (Ex8-5C > T, T241M, rs861539), NBS1 (Ex5-32C > G, E185Q, rs1805794) and RAD51 5′UTR (Ex1-59G > T, rs1801321), tagging 41 SNPs in these genes. The frequency of the different polymorphisms in the Portuguese control population is similar to the ones reported for other Caucasian populations, and the deviation of the Hardy–Weinberg equilibrium was only observed for the XRCC2 (Ex3 + 442G > A, R188H, rs3218536) polymorphism in the control population. The results obtained, after logistic regression analysis, did not reveal a major role of these polymorphisms on breast cancer susceptibility. However, when the population was stratified according to breast feeding (women that breast fed and women that never breast fed) it is observed, in women that never breast fed, that the heterozygous individuals for the XRCC2 (Ex3 + 442G > A, R188H, rs3218536) polymorphism have a decreased risk for breast cancer [adjusted OR = 0.45; 95% CI = 0.22–0.92] (P = 0.03). Additionally, after stratification according to menopausal status, our results suggest that post-menopausal women carrying at least one variant allele for the XRCC3 (Ex8-5C > T, T241M, rs861539) polymorphism have a lower risk for breast cancer [adjusted OR = 0.67; 95% CI, 0.47–0.94] (P = 0.03). Most of the studies suggest that breastfeeding may be responsible for 2/3 of the estimate reduction of breast cancer. The longer the duration of breastfeeding the lower the potential risk associated with breast cancer. Therefore, in our study the potential protective role of the variant allele of XRCC2 (Ex3 + 442G > A, R188H, rs3218536), in never breast fed women, might be related with a more efficient DNA repair activity.  相似文献   

4.
5.
6.
BackgroundSex steroid hormones have been reported to induce inflammation causing dysregulation of cytokines in prostate cancer cells. However, the underlying epigenetic mechanism has not well been studied. The objective of this study was to evaluate the effect of sex steroid hormones on epigenetic DNA methylation changes in prostate cancer cells using a signature PCR methylation array panel that correspond to 96 genes with biological function in the human inflammatory and autoimmune signals in prostate cancer. Of the 96-gene panel, 32 genes showed at least 10% differentially methylation level in response to hormonal treatment when compared to untreated cells. Genes that were hypomethylated included CXCL12, CXCL5, CCL25, IL1F8, IL13RAI, STAT5A, CXCR4 and TLR5; and genes that were hypermethylated included ELA2, TOLLIP, LAG3, CD276 and MALT1. Quantitative RT-PCR analysis of select genes represented in a cytokine expression array panel showed inverse association between DNA methylation and gene expression for TOLLIP, CXCL5, CCL18 and IL5 genes and treatment of prostate cancer cells with 5′-aza-2′-deoxycytidine with or without trichostatin A induced up-regulation of TOLLIP expression. Further analysis of relative gene expression of matched prostate cancer tissues when compared to benign tissues from individual patients with prostate cancer showed increased and significant expression for CCL18 (2.6-fold; p < 0.001), a modest yet significant increase in IL5 expression (1.17-fold; p = 0.015), and a modest increase in CXCL5 expression (1.4-fold; p = 0.25). In conclusion, our studies demonstrate that sex steroid hormones can induce aberrant gene expression via differential methylation changes in prostate carcinogenesis.  相似文献   

7.
Background: Chromosome 19q13.3 has been identified as one of the regions that associate with cancer risk in previous studies. Methods: We systematically examined the 70.772 kb region comprising four genes on chromosome 19q13.3 among Chinese using the haplotype-tagging SNP (htSNP) approach and the HapMap platform. The study involved 339 lung cancer cases and 358 non-cancer controls. Two htSNPs (rs1046282 and rs735482) captured most of the common haplotypes of CD3EA and the combined effects of sixteen htSNPs provided high coverage of common haplotypes of ERCC2, PPP1R13L, CD3EAP and ERCC1. Results: Both carriers of variant CC genotype [adjusted OR (95% CI) = 1.28 (1.02–1.60), P = 0.04] and variant C-allele among >20 years’ smokers [OR (95% CI) = 2.13 (1.24–3.67), P = 0.006] for CD3EAP rs735482 were at increased risk of lung cancer. Four haplotype blocks of strong linkage disequilibrium were identified. The haplotype ERCC2 rs3916874G and rs238415C [OR (95% CI) = 1.26 (1.02–1.57), P = 0.03] in block 1 and the haplotype PPP1R13L rs4803817A, CD3EAP rs1046282T, rs735482C, ERCC1 rs3212980A, rs3212964G [OR (95% CI) = 3.56 (1.55–8.18), P = 0.005] in block 3 were associated with lung cancer risk. MDR (multifactor dimensionality reduction) analysis demonstrated the best significant model of two-attributes containing smoking duration and rs2298881 in ERCC1 (P = 0.004–0.005) and suggested that the effects of high-order interactions among smoking duration and ERCC2, PPP1R13, ERCC1 htSNPs could modulate lung cancer risk. Conclusions: HapMap-based study of 19q13.3 identified that genetic variation of CD3EAP and two loci were associated with lung cancer risk and interaction of smoking duration and genetic variants was the strongest predictor of lung cancer risk in a Chinese population.  相似文献   

8.
High-quality wheat germ extract (hqWGE) is very useful for the high-yield production of various types of protein. The most important key to high productivity is the design of mRNA templates. Although the design has been refined for straightforward and efficient translation in hqWGE, there is still room for improvement in untranslated regions (UTRs), especially the 3′ UTR length, because a long, cumbersome 3′ UTR is commonly used for translation enhancement. Here we examined some short viral 3′ cap-independent translation enhancers (3′ CITEs) to identify effective ones for efficient translation in hqWGE. We then combined the most effective 3′ CITE and a 5′ enhancer to further increase the translation efficiency. mRNA with the optimal short 3′ and 5′ UTRs, both of whose length was less than 150 nt, exhibited a productivity of 1.4 mg/mL in prolonged large-scale protein synthesis in hqWGE, which was comparable to that of control mRNA with a commonly-used long 3′ UTR (∼1200 nt).  相似文献   

9.
Glutaredoxin (Glrx) uses the reducing power of glutathione to maintain and regulate the cellular redox state. Substantial evidence indicates that the alteration of cellular redox status is a critical factor involved in cell growth and death and results in tumorigenesis. We investigated levels of expression of all Glrx genes in a variety of cancers using a real-time polymerase chain reaction (RT-PCR). Among members of the Glrx, family, Glrx3 (PICOT: PKC-interacting cousin of thioredoxin) was preferentially induced in lung (55.3 ± 30.1-fold induction) and colon (50.2 ± 28.8-fold induction) cancer compared to their normal tissues (lung  colon > breast > ovary > bladder > prostate > thyroid > lymphoma > liver  kidney cancers). By contrast, the magnitude of induction folds in other cancer tissues was ranged from 0.83 to 4.0. Moreover, the induction folds of Glrx3 mRNA in colon and lung cancer tissues were significantly higher when compared to those of all thioredoxin (Trx) and peroxiredoxin (Prx) members. Western blot analysis of different and paired cancer tissues revealed the consistent and preferential expression of Glrx3 in lung and colon cancers. Taken together, these results suggest that Glrx3 could take a pivotal role in colon and lung cancer cells during the tumorigenesis.  相似文献   

10.
Background: The CpG island methylator phenotype (CIMP), together with extensive promoter methylation, is regarded as one of the mechanisms involved in colorectal carcinogenesis. The mechanisms underlying CIMP in sporadic colorectal cancer are poorly understood. Genes involved in methyl-group metabolism are likely to affect DNA methylation and thereby influence an individual's risk of CIMP. The aim of the present study was to evaluate whether polymorphisms in the genes encoding methyl-group metabolism pathway predispose to CIMP+ and/or CIMP? CRC. Methods: We examined the potential association between the polymorphisms of MTHFR 677C>T, TS 5′UTR 2R/3R, TS 3′UTR 1494del6, ΔDNMT3B ?149C>T and DNMT3B ?283T>C in a group of 46 CIMP+ CRC cases, 140 CIMP? CRC cases and 140 healthy controls. The CIMP status of the CRC cases was determined by MS-PCR in tumor tissue by a panel of five markers (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1), which was also followed by analyzing hMLH1 methylation and BRAF V600E mutation. Results: The variant allele homozygote genotype for the ΔDNMT3B ?283T>C polymorphism was associated with a decreased risk for CIMP+ CRC (OR: 0.31, 95%CI: 0.09–0.73, p = 0.009). Individuals with TS 3R/3R had an increased risk of CIMP? CRC (OR: 2.21, 95%CI: 1.23–4.91, p = 0.01). Moreover, the carriers of 3R allele had an increased risk of CIMP? CRC (OR: 1.45, 95%CI: 1.10–2.13, p = 0.01). Conclusion: This study provides support to the hypothesis that methyl-group metabolism plays a role in the etiology of both CIMP+ and CIMP? colorectal cancers but has a different impact on a distinct molecular subgroups of colorectal cancer.  相似文献   

11.
Efficient methods for the preparation of 5′-substituted 5′-amino-5′-deoxy-N6-ureidoadenosine derivatives are described. Compounds were screened for antiproliferative activity against a panel of murine and human cell lines (L1210, CEM, and HeLa) and/or against the NCI-60. The most potent derivative inhibited the lung adenocarcinoma cell line NCI-H522 at low nanomolar concentrations (GI50 = 9.7 nM).  相似文献   

12.
The complementary DNA encoding WAP65 protein was cloned from the liver of two fish species sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata). Full-length cDNA sequences were obtained from reverse transcribed total RNA, followed by 5′ and 3′ rapid amplification of cDNA end (RACE) experiments. The full-length cDNA sequence of D. labrax is 1709 bp and the coding sequence is flanked by a 67 bp 5′-UTR and a 358 bp 3′-UTR. The full-length cDNA sequence of S. aurata is 1599 bp, and the coding sequence is flanked by a 48 bp 5′-UTR and a 273 bp 3′-UTR. The deduced amino acid putative primary sequences are composed of 427 and 425 amino acid residues for D. labrax and S. aurata, respectively. They display high homologies with previously described fish WAP65 and other hemopexin-like proteins from rabbit (Oryctolagus cuniculus). Expression of Wap65 has proved to be a natural physiological adaptive answer of teleost fish to warm temperature acclimation. In all fish species studied to date, Wap65 was found expressed mainly by the liver, although other tissues seem able to express Wap65 in response to a warm temperature acclimation, in a specie specific manner. Here, we investigate the tissue specific expression of Wap65 in D. labrax and S. aurata in response to a warm temperature acclimation, by RT-PCR analysis.  相似文献   

13.
Background: Transforming growth factor-β1 (TGF-β1) plays a critical role in human cancer development. Present study aimed to explore the clinical significance of serum TGF-β1 levels in patients with lung cancer and analyze the relationship between TGF-β1 and existing tumor markers for lung cancer. Methods: Serum was collected from 118 patients with lung cancer and 40 healthy volunteers. Serum TGF-β1 levels were measured by enzyme-linked immunosorbent assay (ELISA), and the association with various clinical characteristics was analyzed. The diagnostic value of TGF-β1 was assessed alone and in combination with existing tumor markers for lung cancer. Results: Serum TGF-β1 levels were significantly higher in patients with lung cancer compared to healthy volunteers [0.6 × 105 (0.4 × 105, 0.9 × 105) pg/ml vs 0.5 × 105 (0.3 × 105, 0.7 × 105) pg/ml, P = 0.040]. Although there was a positive correlation between serum TGF-β1 levels and advanced stages, the significant difference was not found between early stages and advanced stages (P = 0.116). The ability of serum TGF-β1 to discriminate lung cancer at a cutoff value of 79,168 pg/ml exhibited sensitivity of 30.6% and specificity of 97.5%. Serum TGF-β1 levels were correlated to cytokeratin fragment 21-1 (CYFRA21-1; R = 0.308, P = 0.020) and neuron-specific enolase (NSE; R = 0.558, P = 0.003). The diagnostic accuracy rates for the existing lung-tumor markers, as SCC, CYFRA21-1, and NSE, were increased from 20.0%, 34.6%, and 45.9% to 48.9%, 51.7%, and 54.5%, respectively by the inclusion of serum TGF-β1 levels. Conclusion: Quantification of serum TGF-β1 levels by ELISA may provide a novel complementary tool for the clinical diagnosis of lung cancer.  相似文献   

14.
Hypoxia stimulates angiogenesis under a variety of pathological conditions, including malignant tumors by inducing expression of angiogenic factors such as VEGFA. Surprisingly, here we report significant association between down-regulation of a new angiogenic factor AGGF1 and high-grade urothelial carcinoma. The proportion of strong AGGF1 expression cases was significantly lower in the high-grade urothelial carcinoma group than that in the low-grade urothelial carcinoma group (P = 1.40 × 10 5) or than that in the normal urothelium tissue group (P = 2.11 × 10 4). We hypothesized that tumor hypoxia was responsible for differential expression of the AGGF1 protein in low- and high-grade urothelial carcinomas, and therefore investigated the molecular regulatory mechanism for AGGF1 expression under hypoxia. Under hypoxic conditions, AGGF1 protein levels declined without any change in mRNA levels and protein stability. Hypoxia-induced down-regulation of AGGF1 was mediated by miR-27a. Overexpression of miR-27a suppressed AGGF1 expression through translational inhibition, but not by RNA degradation. Moreover, the hypoxia-induced decrease of AGGF1 expression disappeared after miR-27a expression was inhibited. Furthermore, down-regulation of AGGF1 reduced hypoxia-induced apoptosis in cancer cells. Taken together, the results of this study indicate that (1) hypoxia down-regulates expression of the AGGF1 protein, but not AGGF1 mRNA, by inducing expression of miR-27a; (2) Down-regulation of AGGF1 had an apparent protective role for cancer cells under hypoxia; (3) Down-regulation of the AGGF1 protein confers a significant risk of high-grade human urothelial bladder carcinoma.  相似文献   

15.
New oxathiazinane dioxides have been derived from d- and l-serine and tested for their in vitro cell growth inhibitory activity toward SKBR3 breast cancer cells. (5R)-5-(4-(4′-Bromomethyl)phenyl)benzyloxymethyl-[1,3,4]-oxathiazinane-3,3-dioxide showed a cytotoxicity of IC50  10 μM.  相似文献   

16.
TRIM28 is a universal corepressor for Kruppel-associated box zinc finger proteins. In this study, we demonstrated the expression of TRIM28 gene was significantly higher in cancerous tissues than in noncancerous tissues (P < 0.001). TRIM28 knockdown resulted in a decrease in cell proliferation in liquid media as well as in soft agar. The proliferation rate was impaired and the cell cycle progression was inhibited after knockdown of TRIM28 in non-small cell lung cancer cell lines PAa and SK-MES-1. We used real-time polymerase chain reaction to detect circulating cancer cells in 138 non-small cell lung cancer patients. The overall positive detection rate was 30.4% (42 of 138) in peripheral blood of NSCLC patients and was 29.9% (29 of 97) in early-stage patients. In a 70-month follow-up study, 20 of 29 patients (69.0%) in TRIM28 positive group had recurrence and/or metastasis, significantly higher (P = 0.004) than in the TRIM28 negative group (25 of 68, 36.8%). In addition, non-small cell lung cancer patients whose circulating cancer cells expressed TRIM28 suffered shorter tumor-specific survival compared with those with absent TRIM28 expression (P < 0.001). Results of our study showed that TRIM28 provides a survival advantage to lung cancer cells and may be a new marker to predict metastasis and prognosis in early-stage non-small cell lung cancer patients.  相似文献   

17.
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,5′-dihydro-1′,3′-oxazole 1 and 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,4′-dimethyl-4′,5′-dihydro-1′,3′-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax = 422 nm, λmin = 386 nm) and compound 2 (λmax = 416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50 = 0.9 ± 0.1 μM, and IC50 = 1.3 ± 0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50 = 13 ± 1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4′-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4′,4′-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.  相似文献   

18.
Two l-nucleosides, l-3′-amino-3′-deoxy-N6-dimethyladenosine (l-3′-ADMdA) 1, previously synthesized in our laboratory, and the novel l-3′-amino-3′-deoxy-N6-methyladenosine-5′-N-methyluronamide (l-3′-AM-MECA) 2 were evaluated in an ischemia/reperfusion model on Langendorff perfused mouse heart. l-3′-ADMdA 1 was found to enhance functional recovery from ischemia (32.2 ± 3.7 cm H2O/s % rate pressure product, compared to 21.3 ± 1.4 for the control and 30.7 ± 3.4 for adenosine) and increase the time to onset of ischemic contracture (14.5 ± 0.9 min, compared to 10.5 ± 1.0 min for the control and 13.6 ± 0.6 min for adenosine) comparable to adenosine. Consistent with the functional recovery data, decreased infarction area was seen in the case of 1 (19.1 ± 8.4, compared to 40.5 ± 7.2% for the control and 11.5 ± 2.1% for adenosine). In contrast, l-3′-AM-MECA 2 did not show significant functional recovery, increased onset of contracture, nor decreased infarction area compared to control. Unlike adenosine, neither 1 nor 2 induced cardiac standstill in mouse heart.  相似文献   

19.
《Cytokine》2014,65(1):88-94
Evidence is accumulating that chronic inflammation may have an important mechanism for the development and progression of lung cancer. Therefore, genetic polymorphisms in genes that involved in the inflammatory response may be associated with lung cancer risk. We evaluated the role of tumor necrosis factor α (TNFA) rs1799724, interleukin 1β (IL1B) rs16944, IL6 rs1800796, myeloperoxidase (MPO) rs2333227 and C-reactive protein (CRP) rs2794520 in a case-control study comprised of 462 lung cancer cases and 379 controls in a Japanese population. Unconditional logistic regression was used to assess the adjusted odds ratios (OR) and 95% confidence intervals (95% CI). CRP rs2794520 (OR = 1.64, 95% CI = 1.19–2.26) and IL6 rs1800796 (OR = 1.41, 95% CI = 1.02–1.96) were associated with lung cancer risk. In addition, we assessed interactions between the polymorphisms and smoking. The polymorphisms did not significantly modify the association between smoking and lung cancer. As TNFA triggers a cytokine cascade, the modifying effect of the TNFA rs1799724 genotypes on the association of any of the remaining polymorphisms with lung cancer risk was also examined. There was a significant interaction between TNFA rs1799724 and MPO rs2333227 (Pinteraction = 0.058). Future studies involving larger control and case populations will undoubtedly lead to a more thorough understanding of the role of the polymorphisms involved in the inflammation pathway in lung cancer.  相似文献   

20.
Allograft inflammatory factor-1 (AIF-1), an interferon (IFN)-γ-inducible calcium-binding cytokine, is associated with the inflammatory response and defense. We cloned and analyzed the expression pattern of the AIF-1 gene of the pearl oyster Pinctada martensii, hereafter designated PmAIF-1. The full-length PmAIF-1 cDNA is 946 bp in length and consists of a 5′-untranslated region (UTR) of 120 bp, a 3′-UTR of 376 bp, and an open reading frame (ORF) of 450 bp encoding a polypeptide of 149 amino acids with an estimated molecular mass of 17 kDa. Sequence analysis reveals that PmAIF-1 contains two EF hand Ca+2-binding motifs like those in previously characterized AIF-1s while alignment with known AIF-1 protein sequences reveals higher similarity to invertebrate orthologs than to those of vertebrates.Quantitative PCR analysis reveals that PmAIF-1 is constitutively expressed, with the highest expression detected in hemocytes, and the expression level of PmAIF-1 mRNA was significantly up-regulated in hemocytes, gill, digestive gland under bacterial challenge and tissue injury. After challenged by gram-negative bacteria Vibrio alginolyticus and Vibrio parahaemolyticus, gram-positive bacteria Bacillus subtilis, the expression level of this gene in hemocytes were all up-regulated and reached the maximum point at 12 h (5.80 folds, P < 0.01), 6 h (5.02 folds, P < 0.01) and 12 h (5.49 folds, P < 0.01), respectively. Under shell damage and mantle injury, PmAIF-1 mRNA increased gradually in the first 3 h and reached a peak of expression at 6 h post-injury. These findings suggest that PmAIF-1 is an acute-response protein involved in the innate immune responses of pearl oysters, and provide general information about the mechanisms of innate immune defense against bacterial infection in pearl oysters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号