首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate cancer (CaP) is the second most common cancer in men worldwide in 2012, and radiation therapy is one of the most common definitive treatment options for localized CaP. However, radioresistance is a major challenge for the current radiotherapy, accumulating evidences suggest microRNAs (miRNAs), as an important regulator in cellular ionizing radiation (IR) responses, are closely correlated with radiosensitivity in many cancers. Here, we identified microRNA-16-5p(miR-16-5p) is significantly upregulated in CaP LNCaP cells following IR and can enhance radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway. To identify the expression profile of miRNAs in CaP cells exposed to IR, we performed human miRNA probe hybridization chip analysis and miR-16-5p was found to be significantly overexpressed in all treatment groups that irradiated with different doses of X-rays and heavy ions (12C6+). Furthermore, overexpression of miR-16-5p suppressed cell proliferation, reduced cell viability, and induced cell cycle arrest at G0/G1 phase, resulting in enhanced radiosensitivity in LNCaP cells. Additionally, miR-16-5p specifically targeted the Cyclin D1/E1–3′-UTR in LNCaP cells and affected the expression of Cyclin D1/E1 in both mRNA and protein levels. Taken together, miR-16-5p enhanced radiosensitivity of CaP cells, the mechanism may be through modulating Cyclin D1/Cyclin E1/pRb/E2F1 pathway to cause cell cycle arrest at G0/G1 phase. These findings provided new insight into the correlation between miR-16-5p, cell cycle arrest, and radiosensitivity in CaP, revealed a previously unrecognized function of miR-16-5p–Cyclin D1/E1–pRb–E2F1 regulation in response to IR and may offer an alternative therapy to improve the efficiency of conventional radiotherapy.  相似文献   

2.
3.
4.
DNA放射损伤与p53   总被引:1,自引:0,他引:1  
Qian X  Zhu YB 《生理科学进展》2005,36(4):379-381
电离辐射等多种因素可以引起DNA损伤,表现为碱基改变、DNA双链断裂(DNA double-strand breaks,DSBs)和DNA单链断裂(Single-strand breaks,SSBs)等多种形式。DNA损伤后,细胞发生应答,即引起细胞周期阻滞和/或细胞程序性死亡,以减少损伤引起的染色体畸变和基因组不稳定。在细胞应答过程中,p53蛋白水平和活性均发生变化,介导细胞周期阻滞、程序性死亡,并直接参与DNA损伤修复过程。  相似文献   

5.
DNA的损伤修复是一个多因子参与的、多环节的复杂修复系统。p53基因以多条信号通路,多种调控方式参与DNA修复。它可以通过其下游一系列靶基因p21、gadd45等调控细胞周期,使细胞停滞于G1期、G2期等检测点,从而使受损DNA有足够的时间进行多因子参与的修复过程;也可以与DNA修复因子PRSA、PCNA、XPp48基因等相互作用,直接参与DNA修复;还可以蛋白-蛋白相互作用参与DNA修复。  相似文献   

6.
We have modeled an MTBP-MDM2–p53 regulatory network by integrating p53–MDM2 autoregulatory model (Proctor and Gray, 2008) with the effect of a cellular protein MTBP (MDM2 binding protein) which is allowed to bind with MDM2 (Brady et al., 2005). We study this model to investigate the activation of p53 and MDM2 steady state levels induced by MTBP protein under different stress conditions. Our simulation results in three approaches namely deterministic, Chemical Langevin equation and stochastic simulation of Master equation show a clear transition from damped limit cycle oscillation to fixed point oscillation during a certain time period with constant stress condition in the cell. This transition is the signature of transition of p53 and MDM2 levels from activated state to stabilized steady state levels. We present various phase diagrams to show the transition between unstable and stable states of p53 and MDM2 concentration levels and also their possible relations among critical value of the parameters at which the respective protein level reach stable steady states. In the stochastic approach, the dynamics of the proteins become noise induced process depending on the system size. We found that this noise enhances the stability of the p53 steady state level.  相似文献   

7.
Widdrol is an odorant compound isolated from Juniperus chinensis. We previously reported that widdrol induces Gap 1 (G1) phase cell cycle arrest and leads to apoptosis in human colon adenocarcinoma HT29 cells. It was also reported that this cell cycle arrest is associated with the induction of checkpoint kinase 2 (Chk2), p53 phosphorylation and cyclin dependent kinase (Cdk) inhibitor p21 expression. In this paper, we investigated the molecular mechanisms of widdrol on the activation of G1 DNA damage checkpoint at early phase when DNA damages occurred in HT29 cells. First of all, we examined that widdrol breaks DNA directly or not. As the results of DNA electrophoresis and formation of phosphorylated histone H2AX (γH2AX) foci in HT29 cells, widdrol generates DNA double-strand breaks directly within 0.5?h both in vitro and in vivo. Based on this result, the change of proteins related in checkpoint pathway was examined over a time course of 0.5-24?h. Treatment of HT29 cells with widdrol elicits the following: (1) phosphorylation of Chk2 and p53, (2) reduction of cell division cycle 25A (Cdc25A) expression, (3) increase of Cdk inhibitor p21 expression, and (4) decrease of the levels of Cdk2 and cyclin E expression in a time-dependent manner. Moreover, only the expression level of mini-chromosome maintenance 4 (MCM4) protein, a subunit of the eukaryotic DNA replicative helicase, is rapidly down-regulated in HT29 cells treated with widdrol over the same time course, but those of the other MCM proteins are unchanged. Overall, our results indicated that widdrol breaks DNA directly in HT29 cells, and this DNA damage results in checkpoint activation via Chk2-p53-Cdc25A-p21-MCM4 pathway and finally cells go to G1-phase cell cycle arrest and apoptosis.  相似文献   

8.
9.
10.
p53的两种结合蛋白:53BP1和53BP2   总被引:1,自引:0,他引:1  
p53基因是一种广谱的肿瘤抑制基因,其产物p53为一多功能的转录调节因子,可以发挥调节细胞生长、细胞凋亡和DNA修复的作用。在人类肿瘤已发现多种p53基因的点突变,但突变不是p53蛋白质丧失功能的唯一途径。胞内蛋白可能影响其活性和功能。53BP1和53BP2是p53在胞浆中的两种结合蛋白。本文阐述了有关这两种蛋白质的研究进展。  相似文献   

11.
12.
13.
A simple colorimetric biosensing technique based on the interaction of gold nanoparticles (AuNPs) with the aptamer was developed for detection of p53, a tumor suppressor protein, in the current study. Aggregation of AuNPs was induced by desorption of the p53 binding RNA aptamer from the surface of AuNPs as a result of the aptamer target interaction leading to the color change of AuNPs from red to purple. The detection limit of p53 protein by the colorimetric approach was 0.1 ng/ml after successful optimization of the amount of aptamer, AuNPs, salts, and incubation time. Furthermore, the catalytic activity of the aggregated AuNPs was greatly enhanced by chemiluminescence (CL) reaction, where the detection limit was enhanced to 10 pg/ml with a regression coefficient of R2 = 0.9907. Here the sensitivity was increased by 10-fold compared with the AuNP-based colorimetric method. Hence, the sensitivity of detection was increased by employing CL, by using the catalytic activity of aggregated AuNPs, on the luminol–hydrogen peroxide reaction. Thus, the combination of colorimetric and CL-based aptasensor can be of great advantage in increasing the sensitivity of detection for any target analyte.  相似文献   

14.
15.
16.
DNA肿瘤病毒蛋白与p53蛋白的相互作用   总被引:2,自引:0,他引:2  
钟叔平  姚开泰 《生命科学》1998,10(3):141-145
大多数人类肿瘤发生p53基因突变,突变性p53蛋白功能失活、半衰期延长,并在肿瘤细胞中大量累积,一般认为,p53基因突变是肿瘤发生的主要因素之一。但是,近年也发现一些人类肿瘤细胞存在p53蛋白累积而无基因突变。这种现象与DNA肿瘤病毒密切相关,业已证明:SV-40T抗原、腺病毒E1B55-kD、E4orf6蛋白、HBVX蛋白、HPVE6蛋白、HCMVIE84蛋白、EBVBZLF1和EBNA5蛋白均与p53蛋白结合而使其功能失活。这表明:p53基因突变并非是p53蛋白功能失活的唯一原因。p53蛋白与病毒蛋白或细胞蛋白相互作用可能是其功能失活的另一主要原因?本文就近年国外有关病毒蛋白与p53蛋白相互作用的研究加以概述;试图引起人们的注意。  相似文献   

17.
18.
19.
流式细胞术检测胃癌前病变DNA及p21,p53含量   总被引:5,自引:0,他引:5  
应用流式细胞术和免疫荧光技术,对80例胃癌前病变细胞中DNA含量,rasp21和p53蛋白进行定量检测,探讨其在胃癌前病变中,作为癌变早期标志物的临床意义.检测结果发现,胃癌前病变的DNA异倍体率随不典型增生病变的分级增高而增加, rasp21和p53蛋白的表达量亦随胃癌前病变不典型增生程度的加重而增高.DNA异倍体和rasp21表达阳性的胃癌前病变出现的癌变率显著增高,提示可能是癌变早期的分子标志物.  相似文献   

20.
Introducing an aryl moiety to our previous pyrrolidone scaffold by molecule fusing strategy afforded two sets of isopropylether–pyrrolidone and α-phenylethylamine–pyrrolidone derivatives. Two novel compounds 8b and 8g of the latter serial showed potent p53–MDM2 inhibitory activities with Ki values of 90 nM which were three-time higher than that of the parent compound. We also confirmed compound 8b can activate p53 proteins in lung cancer A549 cells. The results offered us valuable information for further lead optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号