首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of ascorbic acid on intracellular degradation of collagen synthesized by cultured human-skin fibroblasts was examined. In confluent cells maintained in 0.5% serum-supplemented medium, ascorbic acid had no significant effect on collagen degradation measured with hydroxyproline as the marker. Similar results were obtained when collagen degradation was measured with the marker hydroxylysine, the cellular synthesis of which is independent of ascorbic acid. The stimulatory effects of ascorbic acid on collagen production therefore cannot be explained by a change in the rate of degradation. Ascorbic acid acts at some as yet undetermined level to increase the rate of collagen synthesis.  相似文献   

2.
3.
In this study, we examined whether ascorbic acid (AA) and dehydroascorbic acid (DHA), the oxidized form of AA, levels in tissues regulate the AA transporters, sodium-dependent vitamin C transporters (SVCT) 1 and SVCT2 and DHA transporters, glucose transporter (GLUT) 1, GLUT3, GLUT4 mRNA by using senescence marker protein-30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice. These mice are incapable of synthesizing AA in vivo. AA depletion enhanced SVCT1 and SVCT2 mRNA expression in the liver and SVCT1 and GLUT4 mRNA expression in the small intestine, but not in the cerebrum or kidney. Next, we examined the actual impact of AA uptake by using primary cultured hepatocytes from SMP30/GNL KO mice. In the AA-depleted hepatocytes from SMP30/GNL KO mice, AA uptake was significantly greater than in matched cultures from wild-type mice. These results strongly affirm that intracellular AA is an important regulator of SVCT1 and SVCT2 expression in the liver.  相似文献   

4.
Human skin fibroblasts were cultured on sericin prepared from cocoon shells. The living cell number after 72 h was enhanced to 250% of the no-sericin control. The increase was due to the acceleration of the initial attachment of the cells. It was found that sericin M, the main component of about 400 kDa, and its serine-rich repetitive domain were the active principles.  相似文献   

5.
Treatment with the lipid second messenger, ceramide, activates extracellular signal-regulated kinase-1/2 (ERK1/2), c-Jun N-terminal kinase, and p38 in human skin fibroblasts and induces their collagenase-1 expression (Reunanen, N., Westermarck, J., H?kkinen, L., Holmstr?m, T. H., Elo, I., Eriksson, J. E., and K?h?ri, V.-M. (1998) J. Biol. Chem. 273, 5137-5145). Here we show that C(2)-ceramide inhibits expression of type I and III collagen mRNAs in dermal fibroblasts, suppresses proalpha2(I) collagen promoter activity, and reduces stability of type I collagen mRNAs. The down-regulatory effect of C(2)-ceramide on type I collagen mRNA levels was abrogated by protein kinase C inhibitors H7, staurosporine, and Ro-31-8220 and potently inhibited by a combination of MEK1,2 inhibitor PD98059 and p38 inhibitor SB203580. Activation of ERK1/2 by adenovirus-mediated expression of constitutively active MEK1 resulted in marked down-regulation of type I collagen mRNA levels and production in fibroblasts, whereas activation of p38 by constitutively active MAPK kinase-3b and MAPK kinase-6b slightly up-regulated type I collagen expression. These results identify the ERK1/2 signaling cascade as a potent negative regulatory pathway with respect to type I collagen expression in fibroblasts, suggesting that it mediates inhibition of collagen production in response to mitogenic stimulation and transformation.  相似文献   

6.
We studied the oxidation of [1-14C]phytanic acid, 3-methyl substituted fatty acid, to pristanic acid and 14CO2 in human skin fibroblasts. The specific activity for alpha-oxidation of phytanic acid in peroxisomes was 29- and 124-fold higher than mitochondria and endoplasmic reticulum. This finding demonstrates for the first time the presence of fatty acid alpha-oxidation enzyme system in peroxisomes.  相似文献   

7.
In the present study we show that highly purified human interleukin-1 increases collagen production nearly 2-fold and mRNA levels of type I and III collagen over 2.5-fold in cultured normal human dermal fibroblasts. To minimize the effects of transient prostaglanding E2 production in fibroblasts treated with interleukin-1, the cell cultures were preincubated for 24 h before these measurements were made. The effects of interleukin-1 were also tested on scleroderma fibroblasts exhibiting increased collagen production. Although collagen synthesis was stimulated by interleukin-1 to some degree, the cells grown from both affected and unaffected skin areas were found to be relatively unresponsive to the effects of interleukin-1, suggesting a role for this monokine in the earlier stages of the disease process. The results also suggest that interleukin-1 has a role in stimulation of collagen synthesis under certain normal and pathological conditions in addition to stimulating fibroblast proliferation.  相似文献   

8.
The chain length of [3H]hyaluronic acid synthesized by cultivating human skin fibroblasts in the presence of [3H]glucosamine was investigated. [3H]Hyaluronic acid obtained from the matrix fraction was excluded from a Sepharose CL-2B column irrespective of the incubation period, whereas that from the medium was depolymerized into a constant chain length (Mr = 40,000). The reducing and non-reducing terminals of the depolymerized hyaluronic acid were N-acetylglucosamine and glucuronic acid, respectively. Prolonged incubation produced no oligosaccharides as shown by examination of hyaluronidase digests, suggesting the presence of a novel endo-beta-N-acetylglucosaminidase in cultured human skin fibroblasts.  相似文献   

9.
Although glutamine (Gln) is known as an important stimulator of collagen biosynthesis in collagen-producing cells, the mechanism and endpoints by which it regulate the process remain largely unknown. Intermediates of Gln interconversion: glutamate (Glu) and pyrroline-5-carboxylate (P5C) stimulate collagen biosynthesis in cultured cells but evoke different maxima of collagen biosynthesis stimulating activity at different times of incubation. P5C was found to be the most potent stimulator of collagen biosynthesis after 6 h of incubation (approx. three-fold increase); after 12 h, it induced increase in collagen biosynthesis to 260%, while at 24 h, the process was decreased to approximately 80% of control values. Glu induced increase in collagen biosynthesis to approximately 180%, 400% and 120% of control values, after 6, 12 and 24 h, respectively, suggesting that after 12 h of incubation, Glu was the most potent stimulator of collagen biosynthesis. Glu was also the most potent stimulator of type I procollagen expression at this time. After 6, 12 and 24 h incubation, Gln induced collagen biosynthesis to approximately 112, 115 and 230% of control values, respectively. Since prolidase is known to be involved in collagen metabolism, the enzyme activity assay was performed in fibroblasts cultured in the presence of Gln, Glu and P5C. While Gln and Glu required 24 h for maximal stimulation of prolidase activity, P5C induced it after 6-12 h. The data suggest that P5C induced collagen biosynthesis and prolidase activity in a shorter time than Gln and Glu. We considered that P5C directly stimulates the processes, while Gln acts through its intermediate-P5C. Reduction of P5C to proline is coupled to the conversion of glucose-6-phosphate (G6P) to 6-phospho-gluconate, catalyzed by G6P dehydrogenase. We have found that dehydroepiandrosterone (DHEA), a potent inhibitor of G6P dehydrogenase, inhibited a stimulatory effect of P5C on collagen synthesis, expression of type I collagen and prolidase activity. Our results postulate a potential mechanism of glutamine-induced collagen biosynthesis through its intermediate - P5C. P5C-dependent activation of nucleotide biosynthesis, prolidase activity and P5C conversion into proline may contribute to the stimulation of collagen biosynthesis.  相似文献   

10.
11.
A comparison has been made of the synthesis of glycosaminoglycans by human skin fibroblasts cultured on plastic or collagen gel substrata. Confluent cultures were incubated with [3H]glucosamine and Na235SO4 for 48h. Radiolabelled glycosaminoglycans were then analysed in the spent media and trypsin extracts from cells on plastic and in the medium, trypsin and collagenase extracts from cells on collagen gels. All enzyme extracts and spent media contained hyaluronic acid, heparan sulphate and dermatan sulphate. Hyaluronic acid was the main 3H-labelled component in media and enzyme extracts from cells on both substrata, although it was distributed mainly to the media fractions. Heparan sulphate was the major [35S]sulphated glycosaminoglycan in trypsin extracts of cells on plastic, and dermatan sulphate was the minor component. In contrast, dermatan sulphate was the principal [35S]sulphated glycosaminoglycan in trypsin and collagenase extracts of cells on collagen gels. The culture substratum also influenced the amounts of [35S]sulphated glycosaminoglycans in media and enzyme extracts. With cells on plastic, the medium contained most of the heparan sulphate (75%) and dermatan sulphate (> 90%), whereas the collagenase extract was the main source of heparan sulphate (60%) and dermatan sulphate (80%) from cells on collagen gels; when cells were grown on collagen, the medium contained only 5-20% of the total [35S]sulphated glycosaminoglycans. Depletion of the medium pool was probably caused by binding of [35S]sulphated glycosaminoglycans to the network of native collagen fibres that formed the insoluble fraction of the collagen gel. Furthermore, cells on collagen showed a 3-fold increase in dermatan sulphate synthesis, which could be due to a positive-feedback mechanism activated by the accumulation of dermatan sulphate in the microenvironment of the cultured cells. For comparative structural analyses of glycosaminoglycans synthesized on different substrata labelling experiments were carried out by incubating cells on plastic with [3H]glucosamine, and cells on collagen gels with [14C]glucosamine. Co-chromatography on DEAE-cellulose of mixed media and enzyme extracts showed that heparan sulphate from cells on collagen gels eluted at a lower salt concentration than did heparan sulphate from cells on plastic, whereas with dermatan sulphate the opposite result was obtained, with dermatan sulphate from cells on collagen eluting at a higher salt concentration than dermatan sulphate from cells on plastic. These differences did not correspond to changes in the molecular size of the glycosaminoglycan chains, but they may be caused by alterations in polymer sulphation.  相似文献   

12.
Kinetic parameters and regulatory properties of UDPGDH extracted from cultured human skin fibroblasts were determined and compared with those of UDPGDH from cornea and epiphysial-plate cartilage. Fibroblast enzyme showed an affinity for UDPG 7 times higher than cartilage enzyme and 42 times higher than cornea enzyme. UDP-xylose acted as a co-operative allosteric inhibitor, but under the same experimental conditions fibroblast enzyme was significantly less inhibited. These results were in agreement with the different GAG production of the cells we studied. Fibroblast UDPGDH activity was regulated by the NAD/NADH ratio and it was also affected by modifications of extracellular matrix composition. A significant increase of UDPGDH affinity for UDPG was observed after the treatment of the monolayers with Chase ABC.  相似文献   

13.
14.
The crucial role of collagen in fibrotic disorders has prompted attempts to develop drugs that inhibit collagen accumulation. Peptides containing the unphysiological amino acid 5-oxaproline (Opr) have recently been found to act as specific syncatalytic inactivators of pure prolyl 4-hydroxylase, the enzyme that catalyzes the formation of 4-hydroxyproline in collagens. The present study indicates that oxaproline-containing peptides benzyloxycarbonyl-Phe-Opr-Gly-benzyl ester (I) and benzyloxycarbonyl-Phe-Opr-Gly-ethyl ester (II) inactivate prolyl 4-hydroxylase in cultured human skin fibroblasts, peptide I being about twice as potent as peptide II. Inactivation by 50% was observed after culturing with about 20-40 microM concentrations of peptide I for 48 h. The inactivation appears to be specific, as no changes were found in the activities of two other intracellular enzymes of collagen synthesis, lysyl hydroxylase and galactosylhydroxylysyl glucosyltransferase. Synthesis of 4-hydroxyproline by the cells was markedly decreased, and 4-hydroxyproline-deficient procollagen accumulated intracellularly, whereas no changes were found in the incorporation of [14C]leucine into protein after culturing of the cells with a 30 microM concentration of peptide I for 48 h. No changes were seen in the viability of the cells or the release of lactate dehydrogenase from them into the culture medium. No significant changes were found in the steady-state levels of the mRNAs for the pro-alpha 1 chains of type I and type III procollagens or for the alpha and beta subunits of prolyl 4-hyroxylase or fibronectin after culturing with 75 microM peptide I for 48 h. The data indicate that inactivation of cellular prolyl 4-hydroxylase has marked effects on cellular 4-hydroxyproline formation and collagen secretion but no effects on the steady-state levels of mRNAs for type I and III procollagens or the two types of subunit of prolyl 4-hydroxylase.  相似文献   

15.
16.
Studies on type I procollagen produced by skin fibroblasts cultured from twins with lethal type II of osteogenesis imperfecta (OI) showed that biosynthesis of collagen (measured by L-[5-(3)H]proline incorporation into proteins susceptible to the action of bacterial collagenase) was slightly increased as compared to the control healthy infant. SDS/PAGE showed that the fibroblasts synthesized and secreted only normal type I procollagen. Electrophoretic analysis of collagen chains and CNBr peptides showed the same pattern of electrophoretic migration as in the controls. The lack of posttranslational overmodification of the collagen molecule suggested a molecular defect near the amino terminus of the collagen helix. Digestion of OI type I collagen with trypsin at 30 degrees C for 5 min generated a shorter than normal alpha2 chain which melted at 36 degrees C. Direct sequencing of an asymmetric PCR product revealed a heterozygous single nucleotide change C-->G causing a substitution of histidine by aspartic acid in the alpha2 chain at position 92. Pericellular processing of type I procollagen by the twin's fibroblasts yielded a later appearance of the intermediate pC-alpha1(I) form as compared with control cells.  相似文献   

17.
Cell shape regulates collagen type I expression in human tendon fibroblasts   总被引:1,自引:0,他引:1  
Understanding the relationship between cell shape and cellular function is important for study of cell biology in general and for regulation of cell phenotype in tissue engineering in particular. In this study, microcontact printing technique was used to create cell-adhesive rectangular and circular islands. The rectangular islands had three aspect ratios: 19.6, 4.9, and 2.2, respectively, whereas circular islands had a diameter of 50 microm. Both rectangular and circular islands had the same area of 1960 microm(2). In culture, we found that human tendon fibroblasts (HTFs) assumed the shapes of these islands. Quantitative immunofluorescence measurement showed that more elongated cells expressed higher collagen type I than did less stretched cells even though cell spreading area was the same. This suggests that HTFs, which assume an elongated shape in vivo, have optimal morphology in terms of expression of collagen type I, which is a major component of normal tendons. Using immunohistochemistry along with cell traction force microscopy (CTFM), we further found that these HTFs with different shapes exhibited variations in actin cytoskeletal structure, spatial arrangement of focal adhesions, and spatial distribution and magnitude of cell traction forces. The changes in the actin cytoskeletal structure, focal adhesion distributions, and traction forces in cells with different shapes may be responsible for altered collagen expression, as they are known to be involved in cellular mechanotransduction.  相似文献   

18.
The triple-helical domain of type VII collagen was isolated from human placental membranes by mild digestion with pepsin, and polyclonal antibodies were raised in rabbits against this protein. After affinity purification the antibodies specifically recognized type VII collagen in both the triple-helical and the unfolded state. They also reacted with the fragments P1 and P2, derived from the triple-helical domain by further proteolysis with pepsin, but did not crossreact with other biochemical components of the dermal connective tissue. In skin the presence of a fragment of type VII collagen, similar to that isolated from placenta, was demonstrated by SDS-PAGE and immunoblotting. Type VII collagen represented less than 0.001% of the total collagen extracted by pepsin digestion from newborn or adult skin. The tissue form of type VII collagen was obtained from dermis after artificial epidermolysis with strongly denaturing buffers under conditions reducing disulfide bonds. The protein was identified by immunoblotting with the antibodies. The molecule was composed of three polypeptides with an apparent molecular mass of about 250 kDa, each. Similar large-molecular-mass chains could be identified by immunoblotting in extracts of human fibroblasts in culture.  相似文献   

19.
Since skin collagenase is required for initiation of the degradation of types I and III collagens, the major collagens of the human dermis, we examined its expression during embryonic and fetal development. When using skin fibroblasts cultured from human embryos and fetuses, immunoreactive collagenase concentrations were strongly correlated with estimated gestational age (p less than 0.001), with levels at 7-8 weeks of gestation that were about one-twentieth of those in the 29-week cell cultures. In crude culture medium, the apparent catalytic efficiency (activity per unit immunoreactive protein) was variable, an observation attributable in part to variable expression of a collagenase-inhibitory protein. Following chromatographic purification, four of ten fetal collagenases were found to have greater than or equal to 4-fold decrease in specific activity, suggesting that these particular fetal collagenases may be structurally and/or catalytically altered. Since the decreased levels of immunoreactive protein suggested that decreased enzyme synthesis was the major mechanism, we examined collagenase synthesis in a cell-free translation system. Here, we quantitated collagenase expression in the culture medium of intact cells prior to harvesting mRNA. Compared with the intact adult cells, the fetal cells had 3-17 times less collagenase activity in the medium, while in cell-free translation there was a 2- to 3-fold decrease in collagenase synthesis. These data suggest that decreased in vitro expression is correlated with decreased levels of translatable collagenase mRNA but that other factors, such as the collagenase inhibitor and altered specific activity of the enzyme, may be important in modulating collagenase activity.  相似文献   

20.
During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号