首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allosteric inhibition of protein tyrosine phosphatase 1B   总被引:8,自引:0,他引:8  
Obesity and type II diabetes are closely linked metabolic syndromes that afflict >100 million people worldwide. Although protein tyrosine phosphatase 1B (PTP1B) has emerged as a promising target for the treatment of both syndromes, the discovery of pharmaceutically acceptable inhibitors that bind at the active site remains a substantial challenge. Here we describe the discovery of an allosteric site in PTP1B. Crystal structures of PTP1B in complex with allosteric inhibitors reveal a novel site located approximately 20 A from the catalytic site. We show that allosteric inhibitors prevent formation of the active form of the enzyme by blocking mobility of the catalytic loop, thereby exploiting a general mechanism used by tyrosine phosphatases. Notably, these inhibitors exhibit selectivity for PTP1B and enhance insulin signaling in cells. Allosteric inhibition is a promising strategy for targeting PTP1B and constitutes a mechanism that may be applicable to other tyrosine phosphatases.  相似文献   

2.
Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3   总被引:4,自引:0,他引:4  
Phosphatase of Regenerating Liver-3 (PRL-3) is a small protein tyrosine phosphatase considered an appealing therapeutic cancer target due to its involvement in metastatic progression. However, despite its importance, the direct molecular targets of PRL-3 action are not yet known. Here we report the identification of Ezrin as a specific and direct cellular substrate of PRL-3. In HCT116 colon cancer cell line, Ezrin was identified among the cellular proteins whose phosphorylation level decreased upon ectopic over-expression of wtPRL-3 but not of catalytically inactive PRL-3 mutants. Although PRL-3 over-expression in HCT116 cells appeared to affect Ezrin phosphorylation status at both tyrosine residues and Thr567, suppression of the endogenous protein by RNA interference pointed to Ezrin-Thr567 as the residue primarily affected by PRL-3 action. In vitro dephosphorylation assays suggested Ezrin-Thr567 as a direct substrate of PRL-3 also proving this enzyme as belonging to the dual specificity phosphatase family. Furthermore, the same effect on levels of pThr567, but not on pTyr residues, was observed in endothelial cells pointing to Ezrin-pThr567 dephosphorylation as a mean through which PRL-3 exerts its function in promoting tumor progression as well as in the establishment of the new vasculature needed for tumor survival and expansion.  相似文献   

3.
Nonpeptidyl aryloxymethylphosphonates were prepared and evaluated as protein tyrosine phosphatase inhibitors. The results suggest that aryloxymethylphosphonates are effective nonhydrolyzable phosphotyrosine surrogates and provide further insight into the molecular mechanisms by which phosphate mimics inhibit phosphatase function.  相似文献   

4.
Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.  相似文献   

5.
Xu R 《Cell research》2007,17(4):295-297
Shp2, encoded by the PTPNll gene in human, is a ubiquitously expressed protein tyrosine phosphatase that contains two N-terminal Src homology 2 (SH2) domains (N-SH2, C-SH2, respectively), a catalytic protein-tyrosine phosphatase (PTP) domain, and a C-terminal tail with tyrosyl phosphorylation sites and a prolyl-rich motif [1]. The progress of our understanding of biological functions of Shp2 has clearly shown that Shp2 plays an important role not only in biology of normal hematopoietic cells and other mammalian cells, but also in the development of leukemia and other tumors. Most recently, PTPNll gene has been firmly established as the first proto-oncogene that encodes a protein tyrosine phosphatase [1-3]. In the hematopoietic system, most if not all function of Shp2 is to act as a positive component that is essential for proliferation and/or survival of hematopoietic cells through regulation of signaling pathways involving Erk, Akt and STATS [ 1-4]. Over the past few years, a number of disease-associated Shp2 mutants have been identified in human leukemia and other malignancies [1, 3, 4]. Recently, studies from our laboratories and others strongly suggest that dysregulation of wild-type Shp2 enzyme may be involved in the pathogenesis of adult leukemia [4-7]. These findings not only provide new insights into the role of Shp2 in leukemogenesis and other tumors, but also suggest new therapeutic targets for anti-leukemia drugs.  相似文献   

6.
Naturally occurring flavonoids co-exist as glycoside conjugates, which dominate aglycones in their content. To unveil the structure-activity relationship of a naturally occurring flavonoid, we investigated the effects of the glycosylation of naringenin on the inhibition of enzyme systems related to diabetes (protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase) and on glucose uptake in the insulin-resistant state. Among the tested naringenin derivatives, prunin, a single-glucose-containing flavanone glycoside, potently inhibited PTP1B with an IC50 value of 17.5 ± 2.6 µM. Naringenin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50: 5.4 ± 0.30 µM). In addition, prunin significantly enhanced glucose uptake in a dose-dependent manner in insulin-resistant HepG2 cells. Regarding the inhibition of α-glucosidase, naringenin exhibited more potent inhibitory activity (IC50: 10.6 ± 0.49 µM) than its glycosylated forms and the reference inhibitor, acarbose (IC50: 178.0 ± 0.27 µM). Among the glycosides, only prunin (IC50: 106.5 ± 4.1 µM) was more potent than the positive control. A molecular docking study revealed that prunin had lower binding energy and higher binding affinity than glycosides with higher numbers of H-bonds, suggesting that prunin is the best fit to the PTP1B active site cavity. Therefore, in addition to the number of H-bonds present, possible factors affecting the protein binding and PTP1B inhibition of flavanones include their fit to the active site, hydrogen-bonding affinity, Van der Waals interactions, H-bond distance, and H-bond stability. Furthermore, this study clearly depicted the association of the intensity of bioactivity with the arrangement and characterization of the sugar moiety on the flavonoid skeleton.  相似文献   

7.
Mycobacterium tuberculosis, the causative agent for tuberculosis has employed several signalling molecules to sense the host cellular environment and act accordingly. For example, protein tyrosine phosphatase A (MPtpA) of M. tuberculosis, a signalling protein belonging to the tyrosine phosphatase superfamily, is involved in phagocytosis and is active in virulent mycobacterial form. Starting from a β-lactam framework a new class of structure based cyclic peptide (CP) inhibitors was designed. The synthesis involves a crucial intramolecular transamidation via a ring opening reaction. All the compounds show moderate to good inhibitory activities against MPtpA in micromolar concentrations. The results of inhibition kinetics suggest mixed mode of inhibition. The binding constant determined from circular dichroism (CD) and fluorescence quenching studies shows strong binding of the hydrophilic side chain of CPs with the enzyme active site residues. All these are well supported by docking studies.  相似文献   

8.
Formylchromone inhibits a human protein tyrosine phosphatase PTP1B with a IC(50) value of 73 microM. The chemical reactivity of formylchromone was adjusted by substitution at various positions of the formylchromone skeleton. In an initial assessment of the structure-activity relationship, the most potent inhibitor showed an IC(50) of 4.3 microM against PTP1B and strong or medium selectivity against other human PTPases, LAR and TC-PTP. This compound, however, was not selective against microbial PTPases, YPTP1 and YOP. The potency and selectivity of the formylchromone derivatives expecting further improvements provides a novel pharmacophore for the design of drugs for the treatment of type 2 diabetes and obesity.  相似文献   

9.
Different Drosophila photoreceptors (R cells) connect to neurons in different optic lobe layers. R1-R6 axons project to the lamina; R7 and R8 axons project to separate layers of the medulla. We show a receptor tyrosine phosphatase, PTP69D, is required for lamina target specificity. In Ptp69D mutants, R1-R6 project through the lamina, terminating in the medulla. Genetic mosaics, transgene rescue, and immunolocalization indicate PTP69D functions in R1-R6 growth cones. PTP69D overexpression in R7 and R8 does not respecify their connections, suggesting PTP69D acts in combination with other factors to determine target specificity. Structure-function analysis indicates the extracellular fibronectin type III domains and intracellular phosphatase activity are required for targeting. We propose PTP69D promotes R1-R6 targeting in response to extracellular signals by dephosphorylating substrate(s) in R1-R6 growth cones.  相似文献   

10.
11.
Protein tyrosine phosphatase 1B (PTP1B) is implicated in a number of signaling pathways including those mediated by insulin, epidermal growth factor (EGF), and the Src family kinases. The scaffolding protein caveolin-1 is also a participant in these pathways and is specifically phosphorylated on tyrosine 14, when these pathways are activated. Here, we provide evidence that PTP1B can efficiently catalyze the removal of the phosphoryl group from phosphocaveolin-1. Overexpression of PTP1B decreases tyrosine 14 phosphorylation in caveolin-1, while expression of the substrate-trapping mutant PTP1B/D181A causes the accumulation of phosphocaveolin-1 and prevents its dephosphorylation by endogenous PTPs. We further demonstrate that PTP1B physically associates with caveolin-1. Finally, we show that inhibition of PTP1B activity with a potent and specific small molecule PTP1B inhibitor blocks the PTP1B-catalyzed caveolin-1 dephosphorylation both in vitro and in vivo. Taken together, the results strongly suggest that caveolin-1 is a specific substrate for PTP1B. Identification of caveolin-1 as a PTP1B substrate represents an important new step in further understanding the signaling pathways regulated by PTP1B.  相似文献   

12.
A series of di-indolinone derivatives was designed and synthesized to optimize our lead compounds basing on molecular docking study as PTP1B inhibitors. Successive enzymatic assay identified the synthetic di-indolinone as novel PTP1B inhibitors with low micromole-ranged inhibitory activity and at least several-fold selectivity over other tested homologous PTPs.  相似文献   

13.
Tyrosine kinases and phosphatases establish the crucial balance of tyrosine phosphorylation in cellular signaling, but creating specific inhibitors of protein Tyr phosphatases (PTPs) remains a challenge. Here, we report the development of a potent, selective inhibitor of Mycobacterium tuberculosis PtpB, a bacterial PTP that is secreted into host cells where it disrupts unidentified signaling pathways. The inhibitor, (oxalylamino-methylene)-thiophene sulfonamide (OMTS), showed an IC(50) of 440 +/- 50 nM and >60-fold specificity for PtpB over six human PTPs. The 2 A resolution crystal structure of PtpB in complex with OMTS revealed a large rearrangement of the enzyme, with some residues shifting >27 A relative to the PtpB:PO(4) complex. Extensive contacts with the catalytic loop provide a potential basis for inhibitor selectivity. Two OMTS molecules bound adjacent to each other, raising the possibility of a second substrate phosphotyrosine binding site in PtpB. The PtpB:OMTS structure provides an unanticipated framework to guide inhibitor improvement.  相似文献   

14.
Li B  Zhao Y  Liang L  Ren H  Xing Y  Chen L  Sun M  Wang Y  Han Y  Jia H  Huang C  Wu Z  Jia W 《Plant physiology》2012,159(2):671-681
Protein tyrosine phosphatases (PTPases) have long been thought to be activated by reductants and deactivated by oxidants, owing to the presence of a crucial sulfhydryl group in their catalytic centers. In this article, we report the purification and characterization of Reductant-Inhibited PTPase1 (ZmRIP1) from maize (Zea mays) coleoptiles, and show that this PTPase has a unique mode of redox regulation and signaling. Surprisingly, ZmRIP1 was found to be deactivated by a reductant. A cysteine (Cys) residue (Cys-181) near the active center was found to regulate this unique mode of redox regulation, as mutation of Cys-181 to arginine-181 allowed ZmRIP1 to be activated by a reductant. In response to oxidant treatment, ZmRIP1 was translocated from the chloroplast to the nucleus. Expression of ZmRIP1 in Arabidopsis (Arabidopsis thaliana) plants and maize protoplasts altered the expression of genes encoding enzymes involved in antioxidant catabolism, such as At1g02950, which encodes a glutathione transferase. Thus, the novel PTPase identified in this study is predicted to function in redox signaling in maize.  相似文献   

15.
Phosphotyrosine peptides are useful starting points for inhibitor design and for the search for protein tyrosine phosphatase (PTP) phosphoprotein substrates. To identify novel phosphopeptide substrates of PTP1B, we developed a computational prediction protocol based on a virtual library of protein sequences with known phosphotyrosine sites. To these we applied sequence-based methods, biologically meaningful filters and molecular docking. Five peptides were selected for biochemical testing of their potential as PTP1B substrates. All five peptides were equally good substrates for PTP1B compared to a known peptide substrate whereas appropriate control peptides were not recognized, showing that our protocol can be used to identify novel peptide substrates of PTP1B.  相似文献   

16.
Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is β1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine phosphatase receptor CD148 is shown to be a key intermediary in cell adhesion to S2ED, with downstream β1 integrin-mediated adhesion and cytoskeletal organization. We show that S2ED is a novel ligand for CD148 and identify the region proximal to the transmembrane domain of syndecan-2 as the site of interaction with CD148. A mechanism for the transduction of the signal from CD148 to β1 integrins is elucidated requiring Src kinase and potential implication of the C2β isoform of phosphatidylinositol 3 kinase. Our data uncover a novel pathway for β1 integrin-mediated adhesion of importance in cellular processes such as angiogenesis and inflammation.  相似文献   

17.
cyt-PTP epsilon is a naturally occurring nonreceptor form of the receptor-type protein tyrosine phosphatase (PTP) epsilon. As such, cyt-PTP epsilon enables analysis of phosphatase regulation in the absence of extracellular domains, which participate in dimerization and inactivation of the receptor-type phosphatases receptor-type protein tyrosine phosphatase alpha (RPTPalpha) and CD45. Using immunoprecipitation and gel filtration, we show that cyt-PTP epsilon forms dimers and higher-order associations in vivo, the first such demonstration among nonreceptor phosphatases. Although cyt-PTP epsilon readily dimerizes in the absence of exogenous stabilization, dimerization is increased by oxidative stress. Epidermal growth factor receptor stimulation can affect cyt-PTP epsilon dimerization and tyrosine phosphorylation in either direction, suggesting that cell surface receptors can relay extracellular signals to cyt-PTP epsilon, which lacks extracellular domains of its own. The inactive, membrane-distal (D2) phosphatase domain of cyt-PTP epsilon is a major contributor to intermolecular binding and strongly interacts in a homotypic manner; the presence of D2 and the interactions that it mediates inhibit cyt-PTP epsilon activity. Intermolecular binding is inhibited by the extreme C and N termini of D2. cyt-PTP epsilon lacking these regions constitutively dimerizes, and its activities in vitro towards para-nitrophenylphosphate and in vivo towards the Kv2.1 potassium channel are markedly reduced. We conclude that physiological signals can regulate dimerization and phosphorylation of cyt-PTP epsilon in the absence of direct interaction between the PTP and extracellular molecules. Furthermore, dimerization can be mediated by the D2 domain and does not strictly require the presence of PTP extracellular domains.  相似文献   

18.
PTPases are considered to be involved in the etiology of diabetes mellitus and neural diseases, such as Alzheimer's disease and Parkinson's disease. Therefore, PTPase inhibitors should be useful tools to study the role of PTPases in these diseases and other biological phenomena, and which can be developed into chemotherapeutic agents. In the present study, we have synthesized novel benzofuran isoxazolines 13-21 via 1,3-dipolar cycloaddition reaction using karanjin (1) and kanjone (2), isolated from Pongamia pinnata fruits. All the synthesized compounds were evaluated against PTPase enzyme. Compounds 19 and 20 displayed significant inhibitory activity with IC50 values 76 and 81 microM, respectively.  相似文献   

19.
Polyaromatic quinones, such as the environmental pollutants 9,10-phenanthrenediones, elicit a wide range of responses including growth inhibition, immune suppression, and glucose normalization in diabetic models. Yet the molecular mechanisms behind these effects remain controversial. Here we report that many of them are oxygen-dependent and catalytic inactivators of protein tyrosine phosphatases (PTP). Under aerobic conditions, the PTP inactivation by 2-nitro-9,10-phenanthrenedione followed a pseudo-first-order process, with the rate of inactivation increasing nearly linearly with increasing inhibitor concentration, yielding apparent inactivation rate constants of 4300, 387, and 5200 M(-1) s(-1) at pH 7.2 against CD45, PTP1B, and LAR, respectively. The rate of CD45 inactivation increased approximately 25-fold from pH 6.0 to 7.5, with complete inactivation achieved using a catalytic amount (0.05 molar equiv) of the inhibitor. The quinone-catalyzed CD45 inactivation was prevented by catalase or superoxide dismutase. Inactivated CD45 after (125)I-9,10-phenanthrenedione treatment carried no radioactivity, indicating the absence of a stable inhibitor/enzyme complex. The activity of inactivated CD45 was partially restored ( approximately 10%) by hydroxylamine or dithiothreitol, supporting the presence of a small population of sulfenic acid or sulfenyl-amide species. Treatment of PTP1B with 2-nitro-9,10-phenanthrenedione resulted in the specific and sequential oxidation of the catalytic cysteine to the sulfinic and sulfonic acid. These results suggest that reactive oxygen species and the semiquinone radical, continuously generated during quinone-catalyzed redox cycling, mediate the specific catalytic cysteine oxidation. Naturally occurring quinones may act as efficient regulators of protein tyrosine phosphorylation in biological systems. Aberrant phosphotyrosine homeostasis resulting from continued polyaromatic hydrocarbon quinone exposure may play a significant role in their disease etiology.  相似文献   

20.
A DNA polymerase alpha-primase complex, which had been purified by means of immunoaffinity column chromatography, showed little activity in a reaction mixture composed of Tris-HCl buffer, but showed full activity in potassium phosphate buffer. It was found that potassium ion is required for the reaction by the immunoaffinity-purified enzyme. On the other hand, the DNA polymerase alpha purified by the orthodox biochemical method showed full activity in both buffer systems. A protein factor, which could restore the activity of immunoaffinity-purified DNA polymerase alpha-primase complex in the potassium-free reaction mixture, was separated from biochemically purified DNA polymerase alpha. The factor, designated as factor T, was stable to heat up to 70 degrees C, but was sensitive to trypsin. It sedimented at about 4S through a glycerol gradient. SDS-polyacrylamide gel electrophoresis revealed two polypeptide bands at 56 and 54 kDa. By immunoprecipitation, the factor T was shown to be physically associated with DNA polymerase alpha-primase complex. The stimulation was also observed with poly[d(A-T)], primed M13 DNA, and heat-denatured DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号