首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self‐repair. Because of their unlimited capacity for self‐renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair. To this end, we have subjected undifferentiated pluripotent hESCs to the high density micromass culture conditions we have extensively used to direct the differentiation of embryonic limb bud mesenchymal cells into chondrocytes. We report that micromass cultures of pluripotent hESCs undergo direct, rapid, progressive, and substantially uniform chondrogenic differentiation in the presence of BMP2 or a combination of BMP2 and TGF‐β1, signaling molecules that act in concert to regulate chondrogenesis in the developing limb. The gene expression profiles of hESC‐derived cultures harvested at various times during the progression of their differentiation has enabled us to identify cultures comprising cells in different phases of the chondrogenic lineage ranging from cultures just entering the lineage to well differentiated chondrocytes. Thus, we are poised to compare the abilities of hESC‐derived progenitors in different phases of the chondrogenic lineage for cartilage repair. J. Cell. Physiol. 224: 664–671, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.  相似文献   

4.
Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors.  相似文献   

5.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Pluripotent mesenchymal stem cells (MSCs) are bone marrow stromal progenitor cells that can differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We previously demonstrated that bone morphogenetic protein (BMP) 9 is one of the most potent and yet least characterized BMPs that are able to induce osteogenic differentiation of MSCs both in vitro and in vivo. Here, we conducted gene expression-profiling analysis and identified that Hey1 of the hairy/Enhancer of split-related repressor protein basic helix-loop-helix family was among the most significantly up-regulated early targets in BMP9-stimulated MSCs. We demonstrated that Hey1 expression was up-regulated at the immediate early stage of BMP9-induced osteogenic differentiation. Chromatin immunoprecipitation analysis indicated that Hey1 may be a direct target of the BMP9-induced Smad signaling pathway. Silencing Hey1 expression diminished BMP9-induced osteogenic differentiation both in vitro and in vivo and led to chondrogenic differentiation. Likewise, constitutive Hey1 expression augmented BMP9-mediated bone matrix mineralization. Hey1 and Runx2 were shown to act synergistically in BMP9-induced osteogenic differentiation, and Runx2 expression significantly decreased in the absence of Hey1, suggesting that Runx2 may function downstream of Hey1. Accordingly, the defective osteogenic differentiation caused by Hey1 knockdown was rescued by exogenous Runx2 expression. Thus, our findings suggest that Hey1, through its interplay with Runx2, may play an important role in regulating BMP9-induced osteoblast lineage differentiation of MSCs.  相似文献   

7.
Pluripotent embryonic stem (ES) cells must select between alternative fates of self-replication and lineage commitment during continuous proliferation. Here, we delineate the role of autocrine production of fibroblast growth factor 4 (Fgf4) and associated activation of the Erk1/2 (Mapk3/1) signalling cascade. Fgf4 is the major stimulus activating Erk in mouse ES cells. Interference with FGF or Erk activity using chemical inhibitors or genetic ablations does not impede propagation of undifferentiated ES cells. Instead, such manipulations restrict the ability of ES cells to commit to differentiation. ES cells lacking Fgf4 or treated with FGF receptor inhibitors resist neural and mesodermal induction, and are refractory to BMP-induced non-neural differentiation. Lineage commitment potential of Fgf4-null cells is restored by provision of FGF protein. Thus, FGF enables rather than antagonises the differentiation activity of BMP. The key downstream role of Erk signalling is revealed by examination of Erk2-null ES cells, which fail to undergo either neural or mesodermal differentiation in adherent culture, and retain expression of pluripotency markers Oct4, Nanog and Rex1. These findings establish that Fgf4 stimulation of Erk1/2 is an autoinductive stimulus for na?ve ES cells to exit the self-renewal programme. We propose that the Erk cascade directs transition to a state that is responsive to inductive cues for germ layer segregation. Consideration of Erk signalling as a primary trigger that potentiates lineage commitment provides a context for reconciling disparate views on the contribution of FGF and BMP pathways during germ layer specification in vertebrate embryos.  相似文献   

8.
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.  相似文献   

9.
Our knowledge of cellular differentiation processes during chondro- and osteogenesis, in particular the complex interaction of differentiation factors, is still limited. We used the model system of embryonic stem (ES) cell differentiation in vitro via cellular aggregates, so called embryoid bodies (EBs), to analyze chondrogenic and osteogenic differentiation. ES cells differentiated into chondrocytes and osteocytes throughout a series of developmental stages resembling cellular differentiation events during skeletal development in vivo. A lineage from pluripotent ES cells via mesenchymal, prechondrogenic cells, chondrocytes and hypertrophicchondrocytes up to osteogenic cells was characterized. Furthermore, we found evidence for another osteogenic lineage, bypassing the chondrogenic stage. Together our results suggest that this in vitro system will be helpful to answer so far unacknowledged questions regarding chondrogenic and osteogenic differentiation. For example, we isolated an as yet unknown cDNA fragment from ES cell-derived chondrocytes, which showed a developmentally regulated expression pattern during EB differentiation. Considering ES cell differentiation as an alternative approach for cellular therapy, we used two different methods to obtain pure chondrocyte cultures from the heterogenous EBs. First, members of the transforming growth factor (TGF)-β family were applied and found to modulate chondrogenic differentiation but were not effective enough to produce sufficient amounts of chondrocytes. Second, chondrocytes were isolated from EBs by micro-manipulation. These cells initially showed dedifferentiation into fiboblastoid cells in culture, but later redifferentiated into mature chondrocytes. However, a small amount of chondrocytes isolated from EBs transdifferentiated into other mesenchymal cell types, indicating that chondrocytes derived from ES cells posses a distinct differentiation plasticity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Pluripotency of embryonic stem cells (ESCs) is maintained by the balancing of several signaling pathways, such as Wnt, BMP, and FGF, and differentiation of ESCs into a specific lineage is induced by the disruption of this balance. Sulfated glycans are considered to play important roles in lineage choice of ESC differentiation by regulating several signalings. We examined whether reduction of sulfation by treatment with the chemical inhibitor chlorate can affect differentiation of ESCs. Chlorate treatment inhibited mesodermal differentiation of mouse ESCs, and then induced ectodermal differentiation and accelerated further neural differentiation. This could be explained by the finding that several signaling pathways involved in the induction of mesodermal differentiation (Wnt, BMP, and FGF) or inhibition of neural differentiation (Wnt and BMP) were inhibited in chlorate-treated embryoid bodies, presumably due to reduced sulfation on heparan sulfate and chondroitin sulfate. Furthermore, neural differentiation of human induced pluripotent stem cells (hiPSCs) was also accelerated by chlorate treatment. We propose that chlorate could be used to induce efficient neural differentiation of hiPSCs instead of specific signaling inhibitors, such as Noggin.  相似文献   

11.
Mouse and human embryonic stem cells are in different states of pluripotency (naive/ground and primed states). Mechanisms of signaling regulation in cells with ground and primed states of pluripotency are considerably different. In order to understand the contribution of endogenous and exogenous factors in the maintenance of a metastable state of the cells in different phases of pluripotency, we examined the expression of TGFβ family factors (ActivinA, Nodal, Lefty1, TGFβ1, GDF3, BMP4) and FGF2 initiating the appropriate signaling pathways in mouse and human embryonic stem cells (mESCs, hESCs) and supporting feeder cells. Quantitative real-time PCR analysis of gene expression showed that the expression patterns of endogenous factors studied were considerably different in mESCs and hESCs. The most significant differences were found in the levels of endogenous expression of TGFβ1, BMP4 and ActivinA. The sources of exogenous factors ActivnA, TGFβ1, and FGF2 for hESCs are feeder cells (mouse and human embryonic fibroblasts) expressing high levels of these factors, as well as low levels of BMP4. Thus, our data demonstrated that the in vitro maintenance of metastable state of undifferentiated pluripotent cells is achieved in mESCs and hESCs using different schemes of the regulations of ActivinA/Nodal/Lefty/Smad2/3 and BMP/Smad1/5/8 endogenous branches of TGFβ signaling. The requirement for exogenous stimulation or inhibition of these signaling pathways is due to different patterns of endogenous expression of TGFβ family factors and FGF2 in the mESCs and hESCs. For the hESCs, enhanced activity of ActivinA/Nodal/Lefty/Smad2/3 signaling by exogenous factor stimulation is necessary to mitigate the effects of BMP/Smad1/5/8 signaling pathways that promote cell differentiation into the extraembryonic structures. Significant differences in endogenous FGF2 expression in the cells in the ground and primed states of pluripotency demonstrate diverse involvement of this factor in the regulation of the pluripotent cell self-renewal.  相似文献   

12.
The study of how human embryonic stem cells (hESCs) differentiate into insulin-producing beta cells has twofold significance: first, it provides an in vitro model system for the study of human pancreatic development, and second, it serves as a platform for the ultimate production of beta cells for transplantation into patients with diabetes. The delineation of growth factor interactions regulating pancreas specification from hESCs in vitro is critical to achieving these goals. In this study, we describe the roles of growth factors bFGF, BMP4 and Activin A in early hESC fate determination. The entire differentiation process is carried out in serum-free chemically-defined media (CDM) and results in reliable and robust induction of pancreatic endoderm cells, marked by PDX1, and cell clusters co-expressing markers characteristic of beta cells, including PDX1 and insulin/C-peptide. Varying the combinations of growth factors, we found that treatment of hESCs with bFGF, Activin A and BMP4 (FAB) together for 3–4 days resulted in strong induction of primitive-streak and definitive endoderm-associated genes, including MIXL1, GSC, SOX17 and FOXA2. Early proliferative foregut endoderm and pancreatic lineage cells marked by PDX1, FOXA2 and SOX9 expression are specified in EBs made from FAB-treated hESCs, but not from Activin A alone treated cells. Our results suggest that important tissue interactions occur in EB-based suspension culture that contribute to the complete induction of definitive endoderm and pancreas progenitors. Further differentiation occurs after EBs are embedded in Matrigel and cultured in serum-free media containing insulin, transferrin, selenium, FGF7, nicotinamide, islet neogenesis associated peptide (INGAP) and exendin-4, a long acting GLP-1 agonist. 21–28 days after embedding, PDX1 gene expression levels are comparable to those of human islets used for transplantation, and many PDX1+ clusters are formed. Almost all cells in PDX1+ clusters co-express FOXA2, HNF1ß, HNF6 and SOX9 proteins, and many cells also express CPA1, NKX6.1 and PTF1a. If cells are then switched to medium containing B27 and nicotinamide for 7–14 days, then the number of insulin+ cells increases markedly. Our study identifies a new chemically defined culture protocol for inducing endoderm- and pancreas-committed cells from hESCs and reveals an interplay between FGF, Activin A and BMP signaling in early hESC fate determination.  相似文献   

13.
Human embryonic stem cells (hESCs) are pluripotent stem cells with long-lasting capacity to self-renew and differentiate into various cell types of endodermal, ectodermal or mesodermal origin. Unlike mouse ESCs (mESCs), which can be maintained in an undifferentiated state simply by adding leukemia inhibitory factor (LIF) into the culture medium, hESCs are notorious for the sustained willingness to differentiate and not yet clearly defined signaling pathways that are crucial for their "stemness". Presently, our knowledge involves only limited number of growth factor signaling pathways that appear to be biologically relevant for stem cell functions in vitro. These include BMP, TGFbeta, Wnt, and FGF signaling pathway. The purpose of this review is to summarize recent data on the expression of FGFs and their receptors in hESCs, and critically evaluate the potential effects of FGF signals for their undifferentiated growth and/or differentiation in context with our current understanding of FGF/FGFR biology.  相似文献   

14.
The molecular mechanisms by which bone morphogenetic proteins (BMPs) promote skeletal cell differentiation were investigated in the murine mesenchymal stem cell line C3H10T1/2. Both BMP-7 and BMP-2 induced C3H10T1/2 cells to undergo a sequential pattern of chondrogenic followed by osteogenic differentiation that was dependent on both the concentration and the continuous presence of BMP in the growth media. Differentiation was determined by the expression of chondrogenesis and osteogenesis associated matrix genes. Subsequent experiments using BMP-7 demonstrated that withdrawal of BMP from the growth media led to a complete loss of skeletal cell differentiation accompanied by adipogenic differentiation of these cells. Continuous treatment with BMP-7 increased the expression of Sox9, Msx 2, and c-fos during the periods of chondrogenic differentiation after which point their expression decreased. In contrast, Dlx 5 expression was induced by BMP-7 treatment and remained elevated throughout the time-course of skeletal cell differentiation. Runx2/Cbfa1 was not detected by ribonuclease protection assay (RPA) and did not appear to be induced by BMP-7. The sequential nature of differentiation of chondrocytic and osteoblastic cells and the necessity for continuous BMP treatment to maintain skeletal cell differentiation suggests that the maintenance of selective differentiation of the two skeletal cell lineages might be dependent on BMP-7-regulated expression of other morphogenetic factors. An examination of the expression of Wnt, transforming growth factor-beta (TGF-beta), and the hedgehog family of morphogens showed that Wnt 5b, Wnt 11, BMP-4, growth and differentiation factor-1 (GDF-1), Sonic hedgehog (Shh), and Indian hedgehog (Ihh) were endogenously expressed by C3H10T1/2 cells. Wnt 11, BMP-4, and GDF-1 expression were inhibited by BMP-7 treatment in a dose-dependent manner while Wnt 5b and Shh were selectively induced by BMP-7 during the period of chondrogenic differentiation. Ihh expression also showed induction by BMP-7 treatment, however, the period of maximal expression was during the later time-points, corresponding to osteogenic differentiation. An interesting phenomenon was that BMP-7 activity could be further enhanced twofold by growing the cells in a more nutrient-rich media. In summary, the murine mesenchymal stem cell line C3H10T1/2 was induced to follow an endochondral sequence of chondrogenic and osteogenic differentiation dependent on both dose and continual presence of BMP-7 and enhanced by a nutrient-rich media. Our preliminary results suggest that the induction of osteogenesis is dependent on the secondary regulation of factors that control osteogenesis through an autocrine mechanism.  相似文献   

15.
Proepicardial cells give rise to epicardium, coronary vasculature and cardiac fibroblasts. The proepicardium is derived from the mesodermal lining of the prospective pericardial cavity that simultaneously contributes myocardium to the venous pole of the elongating primitive heart tube. Using proepicardial explant cultures, we show that proepicardial cells have the potential to differentiate into cardiac muscle cells, reflecting the multipotency of this pericardial mesoderm. The differentiation into the myocardial or epicardial lineage is mediated by the cooperative action of BMP and FGF signaling. BMP2 is expressed in the distal IFT myocardium and stimulates cardiomyocyte formation. FGF2 is expressed in the proepicardium and stimulates differentiation into the epicardial lineage. In the base of the proepicardium, coexpression of BMP2 and FGF2 inhibits both myocardial and epicardial differentiation. We conclude that the epicardial/myocardial lineage decisions are mediated by an extrinsic, inductive mechanism, which is determined by the position of the cells in the pericardial mesoderm.  相似文献   

16.
The functional roles of BMP type IA and IB receptors mediating differentiation into the osteogenic and chondrogenic lineage were investigated in the mesenchymal progenitor line C3H10T1/2 in vitro. The capacity of type IA and IB BMP receptors was assessed by the forced expression of the wild-type (wtBMPR-IA or IB) and of the kinase-deficient, dominant-negative form (dnBMPR-IA or -IB) in parental C3H10T1/2 progenitors as well as in C3H10T1/2 progenitors which recombinantly express BMP2 (C3H10T1/2-BMP2) or GDF5 (C3H10T1/2-GDF5). Consistent with the higher endogenous expression rate of BMPR-IA in comparison with BMPR-IB, BMPR-IA plays the dominant role in BMP2-mediated osteo-/chondrogenic development. BMPR-IB moderately influences osteogenic and hardly chondrogenic development. BMPR-IB seems to be unable to efficiently activate downstream signaling pathways upon forced expression. However, a mutation conferring constitutive activity to the BMPR-IB receptor indicates that this receptor possesses the capacity to activate downstream signaling cascades. These results suggest that in mesenchymal progenitors C3H10T1/2 BMPR-IA is responsible for the initiation of the osteogenic as well as chondrogenic development and that BMPR-IA and -IB receptor pathways are well separated in this mesenchymal progenitor line and may not substitute each other. In addition this indicates that type IB and IA BMP receptors may transmit different signals during the specification and differentiation of mesenchymal lineages.  相似文献   

17.
The atrioventricular heart valve leaflets and chordae tendineae are composed of diverse cell lineages and highly organized extracellular matrices that share characteristics with cartilage and tendon cell types in the limb buds and somites. During embryonic chicken valvulogenesis, aggrecan and sox9, characteristic of cartilage cells, are observed in the AV valve leaflets, in contrast to tendon-associated genes scleraxis and tenascin, present in the chordae tendineae. In the limb buds and somites, cartilage cell lineage differentiation is regulated by BMP2, while FGF4 controls tendon cell fate. The ability of BMP2 and FGF4 to induce similar patterns of gene expression in heart valve precursor cells was examined. In multiple assays of cells from prefused endocardial cushions, BMP2 is sufficient to activate Smad1/5/8 phosphorylation and induce sox9 and aggrecan expression, while FGF4 treatment increases phosphorylated MAPK (dpERK) signaling and promotes expression of scleraxis and tenascin. However, these treatments do not alter differentiated lineage gene expression in valve progenitors from fused cushions of older embryos. Together, these studies define regulatory pathways of AV valve progenitor cell diversification into leaflets and chordae tendineae that share inductive interactions and differentiation phenotypes with cartilage and tendon cell lineages.  相似文献   

18.
Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α+/Flk-1 population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α+/KDR population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α+/KDR population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号