首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulatus (Ts). It is a protein presenting 49 amino acid residues, three disulfide bridges, Mr 5534 Da and was classified as a new member of class (subfamily) 2 of the β-KTxs, the second one described for Ts scorpion. The β-KTx family is composed by two-domain peptides: N-terminal helical domain (NHD), with cytolytic activity, and a C-terminal CSαβ domain (CCD), with Kv blocking activity. The extensive electrophysiological screening (16 Kv channels and 5 Nav channels) showed that Ts19 Frag-II presents a specific and significant blocking effect on Kv1.2 (IC50 value of 544 ± 32 nM). However, no cytolytic activity was observed with this toxin. We conclude that the absence of 9 amino acid residues from the N-terminal sequence (compared to Ts19 Frag-I) is responsible for the absence of cytolytic activity. In order to prove this hypothesis, we synthesized the peptide with these 9 amino acid residues, called Ts19 Frag-III. As expected, Ts19 Frag-III showed to be cytolytic and did not block the Kv1.2 channel. The post-translational modifications of Ts19 and its fragments (I–III) are also discussed here. A mechanism of post-translational processing (post-splitting) is suggested to explain Ts19 fragments production. In addition to the discovery of this new toxin, this report provides further evidence for the existence of several compounds in the scorpion venom contributing to the diversity of the venom arsenal.  相似文献   

2.
Grottesi A  Sansom MS 《FEBS letters》2003,535(1-3):29-33
Toxins that block voltage-gated potassium (Kv) channels provide a possible template for improved homology models of the Kv pore. In assessing the interactions of Kv channels and their toxins it is important to determine the dynamic flexibility of the toxins. Multiple 10 ns duration molecular dynamics simulations combined with essential dynamics analysis have been used to explore the flexibility of four different Kv channel-blocking toxins. Three toxins (Tc1, AgTx and ChTx) share a common fold. They also share a common pattern of conformational dynamics, as revealed by essential dynamics analysis of the simulation results. This suggests that some aspects of dynamic behaviour are conserved across a single protein fold class. In each of these three toxins, the residue exhibiting minimum flexibility corresponds to a conserved lysine residue that is suggested to interact with the filter domain of the channel. Thus, comparative simulations reveal functionally important conservation of molecular dynamics as well as protein fold across a family of related toxins.  相似文献   

3.
Potassium channels are widespread in living cells and are involved in many diseases. The scorpion toxin alpha-KTx(12.1) interacts with various K(+) channels, suggesting its capacity to match diverse channel pores. It is recognized that tissue injuries may affect the pH at toxins site of action, thereby modulating both protein conformation and activity. To better understand its molecular mechanism of action, we studied alpha-KTx(12.1) using pH as a tool to explore its plasticity and NMR in combination with MD calculations to detect it. The toxin solution structure consists of an alpha-helix and a triple-stranded beta-sheet stabilized by four disulfide bridges. The NMR results show, in addition, that His28 possesses an unusually low pK(a) of 5.2. The best set of protein conformers is obtained at pH 4.5, while at pH 7.0, the reduced number of NOEs resulting from a faster hydrogen exchange does not allow to reach a good structural convergence. Nonetheless, MD calculations show that the toxin structure does not vary significantly in that pH range, while conformational changes and modifications of the surface charge distribution occur when His28 is fully protonated. Moreover, essential dynamics analysis reveals variations in the toxin's coherent motions. In conclusion, His28, with its low pK(a) value, provides alpha-KTx(12.1) with the ability to preserve its active conformation over a wide pH interval, thus expanding the range of cellular conditions where the toxin can fully exhibit its activity. Overall, the results further underline the role of histidine as a natural controller of proteins' functionality.  相似文献   

4.
Two l-amino acid oxidases (LAAOs) were identified by random sequencing of cDNA libraries from the venom glands of Bothrops moojeni(BmooLAAO) and Bothrops jararacussu(Bjussu LAAO). Phylogenetic analysis involving other SV-LAAOs showed sequence identities within the range 83-87% being closely related to those from Agkistrodon and Trimeresurus. Molecular modeling experiments indicated the FAD-binding, substrate-binding, and helical domains of Bmoo and Bjussu LAAOs. The RMS deviations obtained by the superposition of those domains and that from Calloselasma rhodostoma LAAO crystal structure confirm the high degree of structural similarity between these enzymes. Purified BjussuLAAO-I and BmooLAAO-I exhibited antiprotozoal activities which were demonstrated to be hydrogen-peroxide mediated. This is the first report on the isolation and identification of cDNAs encoding LAAOs from Bothrops venom. The findings here reported contribute to the overall structural elucidation of SV-LAAOs and will advance the understanding on their mode of action.  相似文献   

5.
The venom from the Brazilian scorpion Tityus stigmurus was fractionated by high performance liquid chromatography (HPLC) and the corresponding components were used for molecular mass determination using electrospray ion trap mass spectrometry. One hundred distinct components were clearly assigned showing molecular masses from 216.5 to 44,800.0 Da. Fifteen new components were isolated and sequenced, four of them to completion: Tst-3 (similar to Na(+) channel specific scorpion toxins), Tst-17 (a K(+) channel blocking peptide similar to Tc1), Tst beta KTx (a peptide with identical sequence as that of TsTX-K beta toxin earlier described to exist in T. serrulatus venom) and finally a novel proline-rich peptide of unknown function. Among the eleven components partially sequenced were two enzymes: hyaluronidase and lysozyme. The first enzyme has a molecular mass of 44,800.0 Da. This enzyme showed high activity against the substrate hyaluronan in vitro. Amino acid sequence of the second enzyme showed that it is similar to other known lysozymes, with similar molecular mass and sequence to that of bona fide lysozymes reported in public protein data banks. Finally, this communication reports a correlation among HPLC retention times and molecular masses of folded scorpion toxins as well as a comparative structural and physiological analysis of components from the venom of several species of the genus Tityus.  相似文献   

6.
7.
Agkisacutacin is a new fibrinogenlytic protein from Agkistrodon acutus venom. It consists of two heterologous subunits linked by an intersubunit disulfide bond. The cDNAs encoding the two chains of Agkisacutacin were cloned from a lambdagt11 cDNA library of the snake venom gland and sequenced, including the leader peptides (23/23 amino acid residues) and mature subunits (129/123 amino acid residues). It is structurally related to the family of IX/X-binding protein (IX/X-bp)-like proteins and shows high similarity (alpha-70%/beta-64%) to habu IX/X-bp from Trimeresurus flavoridis, but displays distinct biological activity with direct action on fibrinogen.  相似文献   

8.
A full-length K+ channel cDNA (RHK1) was isolated from a rat cardiac library using the polymerase chain reaction (PCR) method and degenerate oligonucleotide primers derived from K+ channel sequences conserved between Drosophila Shaker H4 and mouse brain MBK1. Although RHK1 was isolated from heart, its expression was found in both heart and brain. The RHK1-encoded protein, when expressed in Xenopus oocytes, gated a 4-aminopyridine (4-AP)-sensitive transient outward current. This current is similar to the transient outward current measured in rat ventricular myocytes with respect to voltage-dependence of activation and inactivation, time course of activation and inactivation, and pharmacology.  相似文献   

9.
In this study, the cDNA of a new peptide from the venom of the scorpion, Buthotus saulcyi, was cloned and sequenced. It codes for a 64 residues peptide (Bsaul1) which shares high sequence similarity with depressant insect toxins of scorpions. The differences between them mainly appear in the loop1 which connects the beta-strand1 to the alpha-helix and seems to be functionally important in long chain scorpion neurotoxins. This loop is three amino acids longer in Bsaul1 compared to other depressant toxins. A comparative amino acid sequence analysis done on Bsaul1 and some of alpha-, beta-, excitatory and depressant toxins of scorpions showed that Bsaul1 contains all the residues which are highly conserved among long chain scorpion neurotoxins. Structural model of Bsaul1 was generated using Ts1 (a beta-toxin that competes with the depressant insect toxins for binding to Na(+) channels) as template. According to the molecular model of Bsaul1, the folding of the polypeptide chain is being composed of an anti-parallel three-stranded beta-sheet and a stretch of alpha- helix, tightly bound by a set of four disulfide bridges. A striking similarity in the spatial arrangement of some critical residues was shown by superposition of the backbone conformation of Bsaul1 and Ts1.  相似文献   

10.
Potassium (K+) channels are critical for a variety of cell functions, including modulation of action potentials, determination of resting membrane potential, and development of memory and learning. In addition to their role in regulating myocyte excitability, cardiac K+ channels control heart rate and coronary vascular tone and are implicated in the development of arrhythmias. We report here the cloning and sequencing of a k+ channel gene, KCNA1, derived from a human cardiac cDNA library and the chromosomal localization of the corresponding genomic clone. Oligonucleotides based on a delayed rectifier K+ channel gene were used in PCR reactions with human genomic DNA to amplify the S4-S6 regions of several different K+ channel genes. These sequences were used to isolate clones from a human cardiac cDNA library. We sequenced one of these clones, HCK1. HCK1 contains putative S2-S6 domains and shares approximately 70% sequence homology with previously isolated Shaker homologues. HCK1 was used to screen human cosmid libraries and a genomic clone was isolated. By sequencing the genomic clones, a putative S1 domain and translation initiation sequences were identified. Genomic mapping using human-rodent somatic cell panels and in situ hybridization with human metaphase chromosomes have localized KCNA1 to the distal short arm of human chromosome 12. This work is an important step in the study of human cardiac K+ channel structure and function and will be of use in the study of human inherited disease.  相似文献   

11.
The cDNA of a firefly luciferase from lantern mRNA of Lampyroidea maculata has been cloned, sequenced and functionally expressed. The cDNA has an open reading frame of 1647 bp and codes for a 548-residue-long polypeptide. Noteworthy, sequence comparison as well as homology modeling showed the highest degree of similarity with H. unmunsana and L. mingrelica luciferases, suggesting a close phylogenetic relationship despite the geographical distance separation. The deduced amino acid sequence of the luciferase gene of firefly L. maculata showed 93% identity to H. unmunsana. Superposition of the three-dimensional model of L. maculata luciferase (generated by homology modeling) and three dimensional structure of Photinus pyralis luciferase revealed that the spatial arrangements of Luciferin and ATP-binding residues are very similar. Putative signature of AMPbinding domain among the various firefly species and Lampyroidea maculata was compared and a striking similarity was found. Different motifs and sites have been identified in Lampyroidea maculata by sequence analysis. Expression and purification of luciferase from Lampyroidea maculata was carried out using Ni-NTA Sepharose. Bioluminescence emission spectrum was similar to Photinus pyralis luciferase.  相似文献   

12.
Zhang N  Li M  Chen X  Wang Y  Wu G  Hu G  Wu H 《Proteins》2004,55(4):835-845
A natural K+ channel blocker, BmKK2 (a member of scorpion toxin subfamily alpha-KTx 14), which is composed of 31 amino acid residues and purified from the venom of the Chinese scorpion Buthus martensi Karsch, was characterized using whole-cell patch-clamp recording in rat hippocampal neurons. The three dimensional structure of BmKK2 was determined with two-dimensional NMR spectroscopy and molecular modelling techniques. In solution this toxin adopted a common alpha/beta-motif, but showed distinct local conformation in the loop between alpha-helix and beta-sheet in comparison with typical short-chain scorpion toxins (e.g., CTX and NTX). Also, the alpha helix is shorter and the beta-sheet element is smaller (each strand consisted only two residues). The unusual structural feature of BmKK2 was attributed to the shorter loop between the alpha-helix and beta-sheet and the presence of two consecutive Pro residues at position 21 and 22 in the loop. Moreover, two models of BmKK2/hKv1.3 channel and BmKK2/rSK2 channel complexes were simulated with docking calculations. The results demonstrated the existence of a alpha-mode binding between the toxin and the channels. The model of BmKK2/rSK2 channel complex exhibited favorable contacts both in electrostatic and hydrophobic, including a network of five hydrogen bonds and bigger interface containing seven pairs of inter-residue interactions. In contrast, the model of BmKK2/hKv1.3 channel complex, containing only three pairs of inter-residue interactions, exhibited poor contacts and smaller interface. The results well explained its lower activity towards Kv channel, and predicted that it may prefer a type of SK channel with a narrower entryway as its specific receptor.  相似文献   

13.
We have cloned a novel voltage-gated K channel, LKv1, in two species of leech. The properties of LKv1 expressed in transiently transfected HEK293 cells is that of a delayed rectifier current. LKv1 may be a major modulator of excitability in leech neurons, since antibody localization studies show that LKv1 is expressed in the soma and axons of all neurons in both the central and peripheral nervous systems. Comparison of the biophysical and pharmacological properties of LKv1 with native voltage-gated conductances in leech neurons suggests that LKv1 may correspond to the previously characterized delayed rectifier current, I(K). Phylogenetic analysis of LKv1 shows that it is related to the Shaker subfamily of voltage-gated K channels although it occupies a separate branch from that of the monophyletic Shaker clade composed of the flatworm, Aplysia, Drosophila, and mammalian Shaker homologs as well as from that of two recently identified Shaker-related K channels in jellyfish. Thus, this analysis indicates that this group of voltage-gated K channels contains several evolutionarily divergent lineages.  相似文献   

14.
A cDNA encoding the main Tityus serrulatus beta-neurotoxin was isolated from a venom gland cDNA library by using an oligonucleotide probe. The amino acid sequence deduced from the cDNA nucleotide sequence indicated that the toxin is the processed product of a precursor containing: (i) a signal peptide of 20 residues; (ii) the amino acid sequence of the mature toxin; and (iii) an extra Gly-Lys-Lys tail at the C-terminal end before the termination codon. Thus, in addition to the removal of the signal peptide by a signal peptidase, the generation of the mature toxin requires both a post-translational cleavage by a carboxypeptidase specific for basic residues and the action of an alpha-amidating enzyme. These results also show that the biosynthetic pathway for beta-toxins of 'New World' scorpion venoms is similar to that already described for alpha-toxins of 'Old World' scorpion venoms.  相似文献   

15.
Xu Y  Wu J  Pei J  Shi Y  Ji Y  Tong Q 《Biochemistry》2000,39(45):13669-13675
BmP02 is a 28-amino acid residue peptide purified from the venom of the Chinese scorpion Buthus martensi Karsch, which had been demonstrated to be a weak blocker of apamin-sensitive calcium-activated potassium channels. Two-dimensional NMR spectroscopy techniques were used to determine the solution structure of BmP02. The results show that BmP02 formed a alpha/beta scorpion fold, the typical three-dimensional structure adopted by most short chain scorpion toxins whose structures have been determined. However, in BmP02 this alpha/beta fold was largely distorted. The alpha-helix was shortened to only one turn, and the loop connecting the helix to the first beta-strand exhibited conformational heterogeneity. The instability of BmP02 could be attributed to a proline at position 17, which is usually a glycine. Because the residue at this position makes intense contact with the alpha-helix, it was supposed that the bulky side chain of proline had pushed the helix away from the beta-sheet. This had a significant influence on the structure and function of BmP02. The alpha-helix rotated by about 40 degrees to avoid Pro17 while forming two disulfides with the second beta-strand. The rotation further caused both ends of the helix to be unwound due to covalent restrictions. According to its structure, BmP02 was supposed to interact with its target via the side chains of Lys11 and Lys13.  相似文献   

16.
Helicobacter pylori is a gram-negative pathogenic bacterium that causes peptic ulcer disease and gastric cancer, and studies of the related potent enzymes associated with this bacterium are urgent for the discovery of novel drug targets. In bacteria, beta-hydroxyacyl-acyl carrier protein (ACP) dehydratase (FabZ) is a potent enzyme in fatty acid biosynthesis and catalyzes the dehydration of beta-hydroxyacyl-ACP to trans-2-acyl-ACP. In this study, the cloning and enzymatic characterization of FabZ from H. pylori strain SS1 (HpFabZ) were reported, and the gene sequence of HpfabZ was deposited in the GenBank database. Enzyme dynamic analysis showed that HpFabZ had a K(m) of 82.6+/-4.3 microM toward its substrate analog crotonoyl-CoA. Dynamic light scattering and native-PAGE investigations suggested that HpFabZ exists as hexamer in native state. Enzymatic characterization and thermal-induced unfolding analysis based on circular dichroism spectral measurements indicated that HpFabZ is very stable against high temperature (90 degrees C). Such a high stability of HpFabZ was well elucidated by the strong H-bonds and hydrophobic interactions among the HpFabZ hexamer as investigated in the modeled HpFabZ hexamer structure. Our current study is hoped to provide useful information in better understanding the FabZ of H. pylori strain and further supply possible hints in the discovery of anti-bacterial compounds using HpFabZ as target.  相似文献   

17.
Anionic Peptides are molecules rich in aspartic acid (Asp) and/or glutamic acid (Glu) residues in the primary structure. This work presents, for the first time, structural characterization and biological activity assays of an anionic peptide from the venom of the scorpion Tityus stigmurus, named TanP. The three-dimensional structure of TanP was obtained by computational modeling and refined by molecular dynamic (MD) simulations. Furthermore, we have performed circular dichroism (CD) analysis to predict TanP secondary structure, and UV–vis spectroscopy to evaluate its chelating activity. CD indicated predominance of random coil conformation in aqueous medium, as well as changes in structure depending on pH and temperature. TanP has chelating activity on copper ions, which modified the peptide’s secondary structure. These results were corroborated by MD data. The molar ratio of binding (TanP:copper) depends on the concentration of peptide: at lower TanP concentration, the molar ratio was 1:5 (TanP:Cu2+), whereas in concentrated TanP solution, the molar ratio was 1:3 (TanP:Cu2+). TanP was not cytotoxic to non-neoplastic or cancer cell lines, and showed an ability to inhibit the in vitro release of nitric oxide by LPS-stimulated macrophages. Altogether, the results suggest TanP is a promising peptide for therapeutic application as a chelating agent.  相似文献   

18.
The gene encoding proline dehydrogenase (ProDH) from Pseudomonas fluorescence was isolated using PCR amplification and cloned into pET23a expression vector. The expression of the recombinant target enzyme was induced by addition of IPTG. The produced His-fusion enzyme was purified and its kinetic properties were studied. The 3D structure modeling was also performed to identify key amino acids involved in FAD-binding and catalysis. The PCR product contained a 1033 bp open reading frame encoding 345 amino acid residue polypeptide chain. SDS-PAGE analysis revealed a MW of 40 kDa, whereas the native enzyme exhibited a MW of 40 kDa suggesting a monomeric protein. The K(m) and V(max) values of the P. fluorescence ProDH were estimated to be 35 mM and 116 micromol/min, respectively. ProDH activity was stable at alkaline pH and the highest activity was observed at 30 degrees C and pH 8.5. The modeling analysis of the three dimensional structure elucidated that Lys-173 and Asp-202, which were oriented near the hydroxyl group of the substrate, were essential residues for the ProDH activity. This study, to our knowledge, is the first data on the cloning and biochemical and structural properties of P. fluorescence ProDH.  相似文献   

19.
The gene encoding proline dehydrogenase (ProDH) from Pseudomonas fluorescens was isolated using PCR amplification and cloned into pET23a expression vector. The expression of the recombinant target enzyme was induced by addition of IPTG. The produced His-fusion enzyme was purified and its kinetic properties were studied. The 3D structure modeling was also performed to identify key amino acids involved in FAD-binding and catalysis. The PCR product contained a 1033 bp open reading frame encoding 345 amino acid residue polypeptide chain. SDS-PAGE analysis revealed a MW of 40 kDa, whereas the native enzyme exhibited a MW of 40 kDa suggesting a monomeric protein. The K m and V max values of the P. fluorescens ProDH were estimated to be 35 mM and 116 μmol/min, respectively. ProDH activity was stable at alkaline pH and the highest activity was observed at 30°C and pH 8.5. The modeling analysis of the three dimensional structure elucidated that Lys-173 and Asp-202, which were oriented near the hydroxyl group of the substrate, were essential residues for the ProDH activity. This study, to our knowledge, is the first data on the cloning and biochemical and structural properties of P. fluorescens ProDH.  相似文献   

20.
We have characterized tamulustoxin, a novel 35-amino-acid peptide found in the venom of the Indian red scorpion (Mesobuthus tamulus). Tamulustoxin was identified through a [125I]toxin I screen, designed to identify toxins that block voltage-activated potassium channels. Tamulustoxin has also been cloned by RT-PCR, using RNA extracted from scorpion venom glands. Tamulustoxin shares no homology with other scorpion venom toxins, although the positions of its six cysteine residues would suggest that it shares the same structural scaffold. Tamulustoxin rapidly inhibited both peak and steady-state currents (18.9 +/- 1.0 and 37 +/- 1.1%, respectively) produced by injecting CHO cells with mRNA encoding the hKv1.6 channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号