首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polyepitopic CD8+ T-cell response is critical for the control of hepatitis B virus (HBV) infection. The HBV X protein (HBx) is a multifunctional protein that is important for the viral life cycle and for host-virus interactions. The aim of this study was to analyze the immunogenicity and dominance of various HLA-A*0201-restricted HBx-derived epitopes. For this purpose, we immunized HLA-A*0201-transgenic mice with HBx-derived peptides and DNA. This is a powerful model for studying the induction of HLA-A*0201-restricted immune responses in vivo, as these mice possess a cytotoxic T lymphocyte (CTL) repertoire representative of HLA-A2.1 individuals. We used cytotoxic tests and enzyme-linked immunosorbent spot (ELISPOT) assays to study the induction of specific cytotoxic and interferon (IFN)-gamma-secreting T cells. This allowed us to classify the HBx epitopes according to their T-cell activation capacity. After endogenous processing of the antigen synthesized in vivo after DNA-based immunization, we found that the HBx-specific T-cell response is targeted against one immunodominant epitope. Furthermore, following peptide immunization, we identified six additional novel subdominant T-cell epitopes. Inclusion of well-characterized epitopic sequences of HBx in a new vaccine for chronic HBV infections could help to broaden the T-cell response.  相似文献   

2.
CD8(+) T cells provide broad immunity to viruses, because they are able to recognize all types of viral proteins. Therefore, the development of vaccines capable of inducing long-lived memory CD8(+) T cells is desired to prevent diseases, especially those for which no vaccines currently exist. However, in designing CD8(+) T cell vaccines, the role of CD4(+) T cells in the induction and maintenance of memory CD8(+) T cells remains uncertain. In the present study, the necessity or not of CD4(+) T cells in the induction and maintenance of memory CD8(+) T cells was investigated in mice immunized with liposome-coupled CTL epitope peptides. When OVA-derived CTL epitope peptides were chemically coupled to the surfaces of liposomes and inoculated into mice, both primary and secondary CTL responses were successfully induced. The results were further confirmed in CD4(+) T cell-eliminated mice, suggesting that CD4(+) T cells were not required for the generation of memory CD8(+) T cells in the case of immunization with liposome-coupled peptides. Thus, surface-linked liposomal antigens, capable of inducing long-lived memory CD8(+) T cells without the contribution of CD4(+) T cells, might be applicable for the development of vaccines to prevent viral infection, especially for those viruses that evade humoral immunity by varying their surface proteins, such as influenza viruses, HIV, HCV, SARS coronaviruses, and Ebola viruses.  相似文献   

3.
The simian virus 40 (SV40) large tumor antigen (Tag) is a virus-encoded oncoprotein which is the target of a strong cytotoxic T-lymphocyte (CTL) response. Three immunodominant H-2(b)-restricted epitopes, designated epitopes I, II/III, and IV, have been defined. We investigated whether induction of CTLs directed against these Tag epitopes might control Tag-induced tumors in SV11(+) (H-2(b)) mice. SV11(+) mice develop spontaneous tumors of the choroid plexus due to expression of SV40 Tag as a transgene. We demonstrate that SV11(+) mice are functionally tolerant to the immunodominant Tag CTL epitopes. CTLs specific for the H-2Kb-restricted Tag epitope IV were induced in SV11(+) mice following adoptive transfer with unprimed C57BL/6 spleen cells and immunization with recombinant vaccinia viruses expressing either full-length Tag or the H-2Kb-restricted epitope IV as a minigene. In addition, irradiation of SV11(+) mice prior to adoptive transfer with unprimed C57BL/6 spleen cells led to the priming of epitope IV-specific CTLs by the endogenous Tag. Induction of epitope IV-specific CTLs in SV11(+) mice by either approach correlated with increased life span and control of the choroid plexus tumor progression, indicating that CTLs specific for the immunodominant Tag epitope IV control the progressive growth of spontaneous tumors induced by this DNA virus oncogene in transgenic mice.  相似文献   

4.
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.  相似文献   

5.
The in vivo induction of a CTL response using Antennapedia homeodomain (AntpHD) fused to a poorly immunogenic CTL epitope requires that the Ag is given in presence of SDS, an unacceptable adjuvant for human use. In the present report, we developed a hybrid CTL epitope delivery system consisting of AntpHD peptide vector formulated in liposomes as an alternative approach to bypass the need for SDS. It is proposed that liposomes will prevent degradation of the Ag in vivo and will deliver AntpHD recombinant peptide to the cytosol of APCs. We show in this work that dendritic cells incubated with AntpHD-fused peptide in liposomes can present MHC class I-restricted peptide and induce CTL response with a minimal amount of Ag. Intracellular processing studies have shown that encapsulated AntpHD recombinant peptide is endocytized before entering the cytosol, where it is processed by the proteasome complex. The processed liposomal peptides are then transported to the endoplasmic reticulum. The increase of the CTL response induced by AntpHD-fused peptide in liposomes correlates with this active transport to the class I-processing pathway. In vivo studies demonstrated that positively charged liposomes increase the immunogenicity of AntpHD-Cw3 when injected s.c. in mice in comparison to SDS. Moreover, addition of CpG oligodeoxynucleotide immunostimulatory sequences further increase the CD8+ T cell response. This strategy combining lipid-based carriers with AntpHD peptide to target poorly immunogenic Ags into the MHC class I processing pathway represents a novel approach for CTL vaccines that may have important applications for development of cancer vaccines.  相似文献   

6.
Cytotoxic T lymphocytes (CTL) have been found to mediate protection in vivo against certain virus infections. CTL also may play an important role in control of infection by hepatitis C virus (HCV), but no CTL epitopes have yet been defined in any HCV protein. The nonstructural protein with homology to RNA polymerase should be a relatively conserved target protein for CTL. To investigate the epitope specificity of CTL specific for this protein, we used 28 peptides from this sequence to study murine CTL. Mice were immunized with a recombinant vaccinia virus expressing the HCV nonstructural region corresponding to the flavivirus NS5 gene (RNA polymerase), and the primed spleen cells were restimulated in vitro with peptides. CTL from H-2d mice responded to a single 16-residue synthetic peptide (HCV 2422 to 2437). This relatively conserved epitope was presented by H-2d class I major histocompatibility complex (MHC) molecules to conventional CD4- CD8+ CTL but was not recognized by CTL restricted by H-2b. Moreover, exon shuffle experiments using several transfectants expressing recombinant Dd/Ld and Kd demonstrated that this peptide is seen in association with alpha 1 and alpha 2 domains of the Dd class I MHC molecule. This peptide differs from the homologous segments of this nonstructural region from three other HCV isolates by one residue each. Variant peptides with single amino acid substitutions were made to test the effect of each residue on the ability to sensitize targets. Neither substitution affected recognition. Therefore, these conservative mutations affected peptide interaction neither with the Dd class I MHC molecule nor with the T-cell receptor. Because these CTL cross-react with all four sequenced isolates of HCV in the United States and Japan, if human CTL display similar cross-reactivity, this peptide may be valuable for studies of HCV diagnosis and vaccine development. Our study provides the first evidence that CD8+ CTL can recognize an epitope from the HCV sequence in association with a class I MHC molecule.  相似文献   

7.
HLA-A2.1/K(b) transgenic mice (A2.1/K(b) mice) were used to investigate the processing of human gp100 melanoma antigen by murine antigen presenting cells (APC). Bone marrow-derived dendritic cells (DC) from A2.1/K(b) mice were transduced with adenovirus encoding human gp100 (Ad2/hugp100v2). The Ad2/hugp100v2-transduced DC express human gp100, as documented by immunoperoxidase staining. Flow cytometric analysis demonstrates that Ad vector transduction does not downregulate expression of several markers, including MHC class I. We show that Ad2/hugp100v2-transduced DC are recognized by peptide-specific, A2.1-restricted CTL, suggesting correct processing and presentation of the hugp100 antigen by murine DC. To assess dominance among the various A2.1-restricted epitopes encoded by hugp100, A2.1/K(b) transgenic mice were immunized with Ad2/hugp100v2-transduced DC. Resulting effector cytotoxic T lymphocytes (CTL) were assayed for peptide specificity using a panel of six synthetic peptides known to encode A2.1-restricted epitopes of human gp100 (denoted G154, G177, G209, G280, G457, G476). CTL obtained from Ad2/hugp100v2-transduced DC immunized A2.1/K(b) mouse lysed target cells presenting five of the six epitopes, supporting the observation that murine cells correctly process the hugp100 antigen. The immunogenicity of individual gp100 epitopes correlates with their binding affinity to A2.1. CTL generated from A2.1/K(b) mice immunized with Ad2/hugp100v2-transduced DC also specifically recognize A2.1(+)/gp100(+) human melanoma cells. These data suggest that murine APC process and present the same set of HLA-restricted peptides, similar to human APC. HLA transgenic mice serve as a useful model system to study class I-restricted epitopes of human tumor-associated antigens.  相似文献   

8.
Schell TD 《Journal of virology》2004,78(4):1751-1762
Mice that express the viral oncoprotein simian virus 40 (SV40) large T antigen (T-Ag) as a transgene provide useful models for the assessment of the state of the host immune response in the face of spontaneous tumor progression. Line SV11 (H2(b)) mice develop rapidly progressing choroid plexus tumors due to expression of full-length T-Ag from the SV40 promoter. In addition, T-Ag expression in the thymus of SV11 mice results in the deletion of CD8(+) T cells specific for the three H2(b)-restricted immunodominant epitopes of T-Ag. Whether CD8(+) T cells specific for the immunorecessive H2-D(b)-restricted epitope V of T-Ag survive negative selection in SV11 mice has not been determined. Immunization of SV11 mice with rVV-ES-V, a recombinant vaccinia virus expressing epitope V as a minigene, resulted in the induction of weak, but reproducible, epitope V-specific cytotoxic T-lymphocyte (CTL) responses. This weak lytic response corresponded with a decreased frequency of epitope V-specific CTL that could be recruited in SV11 mice. In addition, CTL lines derived from rVV-ES-V-immunized SV11 mice had reduced avidities compared to that seen with CTL derived from healthy mice. Despite this initial weak response, significant numbers of epitope V-specific CD8(+) T cells were detected in SV11 mice ex vivo following a priming-boosting approach and these cells demonstrated high avidity for epitope V. The results suggest that low numbers of tumor-reactive CD8(+) T cells with high avidity for epitope V survive negative selection in SV11 mice but can be expanded by specific boosting approaches in the tumor bearing host.  相似文献   

9.
We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2kd-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines.  相似文献   

10.
 Engagement of CD40 on the surface of antigen-presenting cells (APC) has been shown to substitute for T cell help in activating APC to stimulate cytotoxic T lymphocytes (CTL). We explored whether this powerful non-specific signal could enhance the CTL response to a self epitope from a tumor-associated antigen. We immunized mice with a lipopeptide covering the H-2Kd-restricted epitope, amino acids 232–240 of murine wild-type p53, followed by treatment with an activating anti-CD40 monoclonal antibody. Anti-CD40 antibody, given subcutaneously or intravenously, significantly enhanced effector activity against targets pulsed with non-lipidated 232–240 nonamer epitope peptide, as assessed both by a CTL lysis assay and an enzyme-linked immunospot (ELISPOT) assay for interferon-γ-secreting cells. However, despite this enhancement, we could not detect activity against targets expressing p53 endogenously by either assay. This most likely reflects the low avidity of the effectors as determined by a titration of peptide on the target cells. The implications of this work for cancer immunotherapy based on specific responses directed against tumor-associated antigens are discussed. Received: 28 March 2000 / Accepted: 6 June 2000  相似文献   

11.
Interference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2K(b)-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2K(b)-, H-2K(k)-, or H-2K(d)-restricted CD8(+) T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2K(b)-restricted immunodominant epitope. In contrast, H-2K(k)- or H-2K(d)-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8(+) T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism.  相似文献   

12.
Cytotoxic T lymphocytes play a central role in the control of persistent human CMV (HCMV) infection and reactivation. In healthy virus carriers, the specific CD8(+) CTL response is almost entirely directed against the virion tegument protein pp65 and/or the 72-kDa major immediate early protein, IE1. Studies that included a large panel of HCMV(+) donors suggested that immunorelevance of pp65 and IE1 was directly related with individual HLA haplotype difference. Nevertheless, there are no data on the incidence of HCMV natural polymorphism on virus-specific CTL responses. To assess the impact of IE1 polymorphism on CTL response, we have sequenced in 103 clinical isolates the DNA region corresponding to IE1(315-324), an immunodominant epitope presented by HLA-A*0201 molecules. Seven peptidic variants were found with extensive difference in their frequencies. The response of four HLA-A*0201-restricted anti-IE1 T lymphocyte clones, which were previously generated from one donor against autologous B lymphoblastoid cells expressing a recombinant clinical variant of IE1, was then evaluated using target cells loaded with mutant synthetic peptides or expressing rIE1 variants. One of four clones, which have been sorted 19 times among 22 clones targeted against IE1(315-324), recognized six of the seven tested variant epitopes. All three other clones showed distinct reactivity patterns to target cells loaded with the different mutant peptides or expressing IE1 variants. Therefore, in the HLA-A2 context, clonal expansions of anti-IE1 memory CTLs may confer a protection against HCMV successive infections and reactivations by killing cells presenting most of the naturally occurring IE1(315-324) epitope variants.  相似文献   

13.
Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences.  相似文献   

14.
The recent identification of tumor Ags as potential vaccines has prompted the search for efficient adjuvants and delivery systems, especially in the case of peptide-based vaccination protocols. Here, we investigated the adjuvant potential of the recombinant 40-kDa outer membrane protein of Klebsiella pneumoniae (P40) for specific CTL induction. We studied the CTL response induced in HLA-A*0201/K(b) transgenic mice immunized with peptides derived from two melanoma-associated differentiation Ags, the HLA-A*0201-restricted decapeptide Melan-A(26--35) substituted at position 2 and the K(b)-restricted tyrosinase-related protein 2(181--188) T cell epitope. We found that both peptides are able to generate a specific CTL response when mixed with the protein in the absence of conventional adjuvant. This CTL response is a function of the amount of P40 used for immunization. Moreover, the CTL response generated against the tyrosinase-related protein 2(181-188) peptide in presence of P40 is associated with tumor protection in two different experimental models and is independent of the presence of CD4(+) T lymphocytes. Thus, the recombinant bacterial protein P40 functions as a potent immunological adjuvant for specific CTL induction.  相似文献   

15.
The development of cancer vaccines requires approaches to induce expansion and functional differentiation of tumor antigen-specific cytotoxic T lymphocyte (CTL) effectors which posses cytolytic capability and produce cytokines. Efficient induction of such cells is hindered by the poor immunogenicity of tumor antigens and by the poor transduction efficiency of dendritic cells (DCs) with current nonreplicating vectors. We have investigated the use of influenza A virus, a potent viral inducer of CTLs, as a vector expressing the immunodominant HER-2 CTL epitope KIF (E75). For this purpose, an attenuated influenza A/PR8/34 virus with a truncated nonstructural (NS1) gene was generated containing the E75 epitope in its neuraminidase protein (KIF-NS virus). Stimulation of peripheral blood mononuclear cells from healthy donors and of tumor-associated lymphocytes from ovarian and breast cancer patients with DCs infected with KIF-NS virus (KIF-NS DC) induced CTLs that specifically recognized the peptide KIF and HER-2-expressing tumors in cytotoxicity assays and secreted gamma interferon (IFN-gamma) and interleukin-2 at recall with peptide. Priming with KIF-NS DCs increased the number of E75(+) CD45RO(+) cells by more than 10-fold compared to nonstimulated cells. In addition, KIF-NS virus induced high levels of IFN-alpha in DCs. This is the first report demonstrating induction of human epitope-specific CTLs against a tumor-associated antigen with a live attenuated recombinant influenza virus vector. Such vectors may provide a novel approach for tumor antigen delivery, lymphocyte activation, and differentiation in human cancer vaccine development.  相似文献   

16.
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), vaccine-based HCV-specific CTL induction could be a promising strategy to treat HCV-infected patients. In this study, we tried to identify HCV2a-derived epitopes, which can induce human leukocyte antigen (HLA)-A24-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells of HCV2a-infected patients or healthy donors were stimulated in vitro with HCV2a-derived peptides, which were prepared based on the HLA-A24 binding motif. As a result, three peptides (HCV2a 576-584, HCV2a 627-635, and HCV2a 1085-1094) efficiently induced peptide-specific CTLs from HLA-A24(+) HCV2a-infected patients as well as healthy donors. The cytotoxicity was exhibited by peptide-specific CD8(+) T cells in an HLA-A24-restricted manner. In addition, the HCV2a 627-635 peptide was frequently recognized by immunoglobulin G of HCV2a-infected patients. These results indicate that the identified three HCV2a peptides might be applicable to peptide-based immunotherapy for HLA-A24(+) HCV2a-infected patients.  相似文献   

17.
18.
Using synthetic peptides, the HLA-B27-restricted CTL response to EBV in asymptomatic virus carriers has been mapped to four epitope regions in EBV latent cycle Ags. One of these peptide-defined epitopes (RRIYDLIEL) tends to be immunodominant and is recognized in the context of all three B27 subtypes studied, B*2702, B*2704, and B*2705. The other peptide-defined epitopes induce responses only in the context of one subtype, the immunogenic combinations being RRARSLSAERY/B*2702, RRRWRRLTV/B*2704, and FRKAQIQGL/B*2705. We used immunoaffinity chromatography to isolate the naturally presented viral peptides associated with these MHC class I molecules on the surface of EBV-transformed B-LCL. Using CTL reconstitution assays in conjunction with mass spectrometry, we established that the naturally processed and presented peptides are identical with the previously identified synthetic sequences. Despite the subtype-specific immunogenicity of three of the four epitopes, all four epitope peptides were found in association with each of the three different HLA-B27 subtypes. Indeed, those peptides that failed to induce a response in the context of a particular HLA-B27 subtype were frequently presented at greater abundance by that subtype than were the immunogenic peptides. Furthermore, among the peptides that did induce a response, immunodominance did not correlate with epitope abundance; in fact the immunodominant RRIYDLIEL epitope was least abundant, being present at less than one copy per cell. The relationship of this unexpected finding to the persistence of EBV is discussed.  相似文献   

19.
Protective immunity against mycobacteria is dependent on antigen/MHC class II specific, CD4+ Th1 cells. HLA-DR3-restricted Th1 cells respond to a subset of mycobacterial antigens, including the immunodominant hsp65, and recognize a single epitope in hsp65, notably p1-20. Altered peptide ligands (APL) of p1-20 can inhibit p1-20/hsp65-induced proliferation of DR3-restricted T cells in an allele specific mannerin vitro. In order to develop a preclinical model in which p1-20 APL can be testedin vivo in the context of HLA, we have used murine class II deficient, HLA transgenic (Ab0) mice, in which all CD4+ T cells are restricted by the tg HLA molecule. BCG-immunized DR3.Ab0 and DQ8.Ab0 mice both responded well to hsp65. Furthermore, DR3.Ab0 mice recognized precisely the same p1-20 epitope as DR3-restricted human T cells, whereas DQ8.Ab0 mice responded to a different set of hsp65 peptides. This shows that (i) the same immunodominant protein and peptide epitope are recognized by T cells from DR3.Ab0 mice and DR3+ humans and (ii) indicates the major role of HLA-polymorphism in controlling the human T cell response to mycobacterial antigens. Thus, HLA-transgenic, Ab0 mice provide a novel, preclinical model system to analyze APL and vaccines in the context of HLA polymorphism.  相似文献   

20.
The HIV-1 Gag protein is an attractive target for CTL-based vaccine strategies because it shows less sequence variability than other HIV-1 proteins. In an attempt to increase the immunogenicity of HIV-1 Gag, we created Gag variants that were targeted to the proteasomal pathway for rapid degradation. This enhanced rate of degradation was associated with increased presentation of MHC class I-associated antigenic peptides on the cell surface. Despite this, immunizing mice with either plasmid DNA or recombinant vaccinia vectors expressing unstable Gag failed to produce significant increases in bulk CTL responses or Ag-specific production of IFN-gamma by CD8(+) T cells compared with mice immunized with stable forms of Gag. Production of IFN-gamma by CD4(+) T cells was also impaired, and we speculate that the abrogation of CD4(+) T cell help was responsible for the impaired CTL response. These results suggest that vaccine strategies designed to increase the density of peptide-MHC class I complexes on the surfaces of APC may not necessarily enhance immunogenicity with respect to CTL responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号