首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been known that ribosome-inactivating proteins (RIPs) from plants damage ribosomes by removing adenine from a precise position of rRNA. Subsequently it was observed that all tested RIPs depurinate DNA, and some of them also non-ribosomal RNAs and poly(A), hence the denomination of adenine polynucleotide glycosylases was proposed. We report now that ricin, saporin-L2, saporin-S6, gelonin and momordin depurinate also poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase (auto modified enzyme), an enzyme involved in DNA repair. We observed also that all RIPs but gelonin induce transformation of fibroblasts, possibly as a consequence of damage to DNA and of the altered DNA repair system.  相似文献   

2.
Base excision repair (BER) corrects a variety of small base lesions in DNA. The UNG gene encodes both the nuclear (UNG2) and the mitochondrial (UNG1) forms of the human uracil-DNA glycosylase (UDG). We prepared mitochondrial extracts free of nuclear BER proteins from human cell lines. Using these extracts we show that UNG is the only detectable UDG in mitochondria, and mitochondrial BER (mtBER) of uracil and AP sites occur by both single-nucleotide insertion and long-patch repair DNA synthesis. Importantly, extracts of mitochondria carry out repair of modified AP sites which in nuclei occurs through long-patch BER. Such lesions may be rather prevalent in mitochondrial DNA because of its proximity to the electron transport chain, the primary site of production of reactive oxygen species. Furthermore, mitochondrial extracts remove 5' protruding flaps from DNA which can be formed during long-patch BER, by a "flap endonuclease like" activity, although flap endonuclease (FEN1) is not present in mitochondria. In conclusion, combined short- and long-patch BER activities enable mitochondria to repair a broader range of lesions in mtDNA than previously known.  相似文献   

3.
J Kreike  M Schulze  F Ahne    B F Lang 《The EMBO journal》1987,6(7):2123-2129
We have cloned a 1.6-kb fragment of yeast nuclear DNA, which complements pet- mutant MK3 (mrs1). This mutant was shown to be defective in mitochondrial RNA splicing: the excision of intron 3 from the mitochondrial COB pre-RNA is blocked. The DNA sequence of the nuclear DNA fragment revealed two open reading frames (ORF1 with 1092 bp; ORF2 with 735 bp) on opposite strands, which overlap by 656 bp. As shown by in vitro mutagenesis, ORF1, but not ORF2, is responsible for complementation of the splice defect. Hence, ORF1 represents the nuclear MRS1 gene. Disruption of the gene (both ORFs) in the chromosomal DNA of the respiratory competent yeast strain DBY747 (long form COB gene) leads to a stable pet- phenotype and to the accumulation of the same mitochondrial RNA precursors as in strain MK3. The amino acid sequence of the putative ORF1 product does not exhibit any homology with other known proteins, except for a small region of homology with the gene product of another nuclear yeast gene involved in mitochondrial RNA splicing, CBP2. The function of the MRS1 (ORF1) gene in mitochondrial RNA splicing and the significance of the overlapping ORFs in this gene are discussed.  相似文献   

4.
Polynucleotide: adenosine glycosidases (PNAG) are a class of plant and bacterial enzymes commonly known as ribosome-inactivating proteins (RIP). They are presently classified as rRNA N-glycosidases in the enzyme nomenclature [EC 3.2.2.22]. Several activities on nucleic acids, other than depurination, have been attributed to PNAG: in particular modifications induced in circular plasmids, including linearisation and topological changes, and cleavage of guanidinic residues. Here we describe a chromatographic procedure to obtain nuclease-free PNAG by dye-chromatography onto Procion Red derivatized Sepharose((R)). Highly purified enzymes depurinate extensively pBR322 circular, supercoiled DNA at neutral pH and exhibit neither DNase nor DNA glycolyase activities, do not cause topological changes, and adenine is the only base released from DNA and rRNA, even at very high enzyme concentrations. A scanning force microscopy (SFM) study of pBR322 treated with saporin-S6 confirmed that (i) this PNAG binds extensively to the plasmid, (ii) the distribution of the bound saporin-S6 molecules along the DNA chain is markedly variable, (iii) plasmids already digested with saporin-S6 do not appear fragmented or topologically modified. The observations here described demonstrate that polynucleotide:adenosine glycosidase is the sole enzymatic activity of the four ribosome-inactivating proteins gelonin, momordin I, pokeweed antiviral protein from seeds and saporin-S6. These proteins belong to different families, suggesting that the findings here described may be generalized to all PNAG.  相似文献   

5.
Oxidative base lesions, such as 8-oxoguanine (8-oxoG), accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known which form of DNA is involved, whether nuclear or mitochondrial, nor is it known how the death order is executed. We established cells which selectively accumulate 8-oxoG in either type of DNA by expression of a nuclear or mitochondrial form of human 8-oxoG DNA glycosylase in OGG1-null mouse cells. The accumulation of 8-oxoG in nuclear DNA caused poly-ADP-ribose polymerase (PARP)-dependent nuclear translocation of apoptosis-inducing factor, whereas that in mitochondrial DNA caused mitochondrial dysfunction and Ca2+ release, thereby activating calpain. Both cell deaths were triggered by single-strand breaks (SSBs) that had accumulated in the respective DNAs, and were suppressed by knockdown of adenine DNA glycosylase encoded by MutY homolog, thus indicating that excision of adenine opposite 8-oxoG lead to the accumulation of SSBs in each type of DNA. SSBs in nuclear DNA activated PARP, whereas those in mitochondrial DNA caused their depletion, thereby initiating the two distinct pathways of cell death.  相似文献   

6.
7.
8.
黄瓜线粒体DNA类质粒pC1的性质和核酸序列研究   总被引:2,自引:0,他引:2  
津研四号黄瓜线粒体中除主环DNA外,还有4种DNA类质粒:pC1、pC2、pC3、pC4。将环形类质粒pC1lpk gc pUC19的EcoRⅠ位点上,克隆至E.coli JM109中。以克隆的pC1为探针,进行同源性检测,pC1与津研四号黄瓜的核基因组、叶绿体基因组、线粒体基因组和线粒体中其他类质粒不同源。对pC1进行序列测定和分析,pC1长度2 889bp,含有多个正向和反向重复序列,有3个8  相似文献   

9.
A novel, type 1 ribosome-inactivating protein designated charybdin was isolated from bulbs of Charybdis maritima agg. The protein, consisting of a single polypeptide chain with a molecular mass of 29 kDa, inhibited translation in rabbit reticulocytes with an IC50 of 27.2 nm. Plant genomic DNA extracted from the bulb was amplified by PCR between primers based on the N-terminal and C-terminal sequence of the protein from dissolved crystals. The complete mature protein sequence was derived by partial DNA sequencing and terminal protein sequencing, and was confirmed by high-resolution crystal structure analysis. The protein contains Val at position 79 instead of the conserved Tyr residue of the ribosome-inactivating proteins known to date. To our knowledge, this is the first observation of a natural substitution of a catalytic residue at the active site of a natural ribosome-inactivating protein. This substitution in the active site may be responsible for the relatively low in vitro translation inhibitory effect compared with other ribosome-inactivating proteins. Single crystals were grown in the cold room from PEG6000 solutions. Diffraction data collected to 1.6 A resolution were used to determine the protein structure by the molecular replacement method. The fold of the protein comprises two structural domains: an alpha + beta N-terminal domain (residues 4-190) and a mainly alpha-helical C-terminal domain (residues 191-257). The active site is located in the interface between the two domains and comprises residues Val79, Tyr117, Glu167 and Arg170.  相似文献   

10.
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function – deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria.Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.  相似文献   

11.
The mitochondrial oxidative phosphorylation (OXPHOS) proteins are encoded by both nuclear and mitochondrial DNA. The nuclear-encoded OXPHOS mRNAs have specific subcellular localizations, but little is known about which localize near mitochondria. Here, we compared mRNAs in mitochondria-bound polysome fractions with those in cytosolic, free polysome fractions. mRNAs encoding hydrophobic OXPHOS proteins, which insert into the inner membrane, were localized near mitochondria. Conversely, OXPHOS gene which mRNAs were predominantly localized in cytosol had less than one transmembrane domain. The RNA-binding protein Y-box binding protein-1 is localized at the mitochondrial outer membrane and bound to the OXPHOS mRNAs. Our findings offer new insight into mitochondrial co-translational import in human cells.  相似文献   

12.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA(Val). This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

13.
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell's nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here.  相似文献   

14.
Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as β-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a “dilution bias” when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.  相似文献   

15.
16.
17.
18.
19.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNAVal. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号