首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclomaltodextrinase (CDase, EC 3.2.1.54), maltogenic amylase (EC 3. 2.1.133), and neopullulanase (EC 3.2.1.135) are reported to be capable of hydrolyzing all or two of the following three types of substrates: cyclomaltodextrins (CDs); pullulan; and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. The present review surveys the biochemical, enzymatic, and structural properties of three types of such enzymes as defined based on the substrate specificity toward the CDs: type I, cyclomaltodextrinase and maltogenic amylase that hydrolyze CDs much faster than pullulan and starch; type II, Thermoactinomyces vulgaris amylase II (TVA II) that hydrolyzes CDs much less efficiently than pullulan; and type III, neopullulanase that hydrolyzes pullulan efficiently, but remains to be reported to hydrolyze CDs. These three types of enzymes exhibit 40-60% amino acid sequence identity. They occur in the cytoplasm of bacteria and have molecular masses from 62 to 90 kDa which are slightly larger than those of most alpha-amylases. Multiple amino acid sequence alignment and crystal structures of maltogenic amylase and TVA II reveal the presence of an N-terminal extension of approximately 130 residues not found in alpha-amylases. This unique N-terminal domain as seen in the crystal structures apparently contributes to the active site structure leading to the distinct substrate specificity through a dimer formation. In aqueous solution, most of these enzymes show a monomer-dimer equilibrium. The present review discusses the multiple specificity in the light of the oligomerization and the molecular structures arriving at a clarified enzyme classification. Finally, a physiological role of the enzymes is proposed.  相似文献   

2.
The specificity of Bacillus stearothermophilus TRS40 neopullulanase toward amylose and amylopectin was analyzed. Although this neopullulanase completely hydrolyzed amylose to produce maltose as the main product, it scarcely hydrolyzed amylopectin. The molecular mass of amylopectin was decreased by only one order of magnitude, from approximately 10(8) to 10(7) Da. Furthermore, this neopullulanase selectively hydrolyzed amylose when starch was used as a substrate. This phenomenon, efficient hydrolysis of amylose but not amylopectin, was also observed with cyclomaltodextrinase from alkaliphilic Bacillus sp. strain A2-5a and maltogenic amylase from Bacillus licheniformis ATCC 27811. These three enzymes hydrolyzed cyclomaltodextrins and amylose much faster than pullulan. Other amylolytic enzymes, such as bacterial saccharifying alpha-amylase, bacterial liquefying alpha-amylase, beta-amylase, and neopullulanase from Bacillus megaterium, did not exhibit this distinct substrate specificity at all, i.e., the preference of amylose to amylopectin.  相似文献   

3.
The relation between the quaternary structure and the substrate specificity of Thermus maltogenic amylase (ThMA) has been investigated. Sedimentation diffusion equilibrium ultracentrifugation and gel filtration analyses, in combination with the crystal structure determined recently, have demonstrated that ThMA existed in a monomer/dimer equilibrium. The truncation of ThMA by removing the N-terminal domain, which is composed of 124 amino acid residues, resulted in the complete monomerization of the enzyme (ThMADelta124) accompanied by a drastic decrease in the activity for beta-cyclodextrin (beta-CD) and a relatively smaller reduction of the activity for starch. Despite the overall low activity of ThMADelta124, the activity was higher toward starch than beta-CD, and the ratio of the specific activities toward these substrates was approximately 100 fold higher than that of wild-type ThMA. Furthermore, the addition of KCl to wild-type ThMA shifted the monomer/dimer equilibrium toward the monomer. In the presence of 1.0 M KCl, the relative activity of ThMA toward beta-CD decreased to 74%, while that for soluble starch increased to 194% compared to the activities in the absence of KCl. Thus, the ThMA monomer and dimer are both inferred to be enzymatically active but with a somewhat different substrate preference. Kinetic parameters of the wild-type and truncated enzymes also are in accordance with the changes in their specific activities. We thus provide evidence in support of a model, which shows that the relative multisubstrate specificity of ThMA is influenced by the monomer/dimer equilibrium of the enzyme.  相似文献   

4.
The specificity of Bacillus stearothermophilus TRS40 neopullulanase toward amylose and amylopectin was analyzed. Although this neopullulanase completely hydrolyzed amylose to produce maltose as the main product, it scarcely hydrolyzed amylopectin. The molecular mass of amylopectin was decreased by only one order of magnitude, from approximately 108 to 107 Da. Furthermore, this neopullulanase selectively hydrolyzed amylose when starch was used as a substrate. This phenomenon, efficient hydrolysis of amylose but not amylopectin, was also observed with cyclomaltodextrinase from alkaliphilic Bacillus sp. strain A2-5a and maltogenic amylase from Bacillus licheniformis ATCC 27811. These three enzymes hydrolyzed cyclomaltodextrins and amylose much faster than pullulan. Other amylolytic enzymes, such as bacterial saccharifying α-amylase, bacterial liquefying α-amylase, β-amylase, and neopullulanase from Bacillus megaterium, did not exhibit this distinct substrate specificity at all, i.e., the preference of amylose to amylopectin.  相似文献   

5.
嗜热菌Thermus sp.YBJ-1的分离和淀粉酶基因的克隆   总被引:4,自引:0,他引:4  
从西藏热泉水样分离得到一株嗜热菌(YBJ-1),其16S rDNA(1511bp)序列与栖热菌(Thermus scotoductus ITI-252T)的同源性为98%。通过PCR技术将Thermus sp.YBJ-1的淀粉酶基因(amyT)全长开放阅读框克隆到T载体。分析表明,amyT的ORF全长为1767bp,编码588个氨基酸。推导的氨基酸序列与嗜热脂肪芽孢杆菌的阿尔法环糊精酶(Bacillus stearothermophilus alpha-eyclodextrinase)和栖热菌Thermus sp.IM6501的麦芽糖淀粉酶(Thermus sp.IM6501 mahogenic amylase)分别有99%和96%的同源性,与嗜热脂肪芽孢杆菌的新普鲁兰酶(neopullulanase)的同源性为81%。  相似文献   

6.
A gene encoding a cyclomaltodextrinase (neopullulanase) was cloned from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius ATCC27009 and its nucleotide sequence was determined. The encoded CdaA protein lacked an N-terminal signal sequence and aligned well with a family of bacterial proteins described as maltogenic alpha-amylases, neopullulanases or cyclomaltodextrinases. Escherichia coli cells harboring the cloned cdaA gene produced a 66-kDa protein that degraded pullulan in a sodium dodecyl sulfate-polyacrylamide gel. A. acidocaldarius cells grown on maltose, soluble starch or pullulan synthesized the same protein. Neopullulanase activity of the protein was cytoplasmic and its pH optimum of 5.5 was close to the pH value of the cytoplasm. CdaA degraded cyclomaltodextrins rapidly and pullulan (to panose) more slowly. It is proposed that CdaA functions as a cytoplasmic cyclomaltodextrinase (EC 3.2.1.54).  相似文献   

7.
Six glycoside hydrolase (GH) family 13 members, classified under the polyspecific neopullulanase subfamily GH13_20 (also termed cyclomaltodextrinase) were analysed. They originate from thermophilic bacterial strains (Anoxybacillus flavithermus, Laceyella sacchari, and Geobacillus thermoleovorans) or from environmental DNA, collected after in situ enrichments in Icelandic hot springs. The genes were isolated following the CODEHOP consensus primer strategy, utilizing the first two of the four conserved sequence regions in GH13. The typical domain structure of GH13_20, including an N-terminal domain (classified as CBM34), the catalytic module composed of the A-and B-domains, and a C-terminal domain, was found in five of the encoded enzymes (abbreviated Amy1, 89, 92, 98 and 132). These five enzymes degraded cyclomaltodextrins (CDs) and starch, while only three, Amy92 (L. sacchari), Amy98 (A. flavithermus) and Amy132 (environmental DNA), also harboured neopullulanase activity. The L. sacchari enzyme was monomeric, but with CD as the preferred substrate, which is an unusual combination. The sixth enzyme (Amy29 from environmental DNA), was composed of the ABC-domains only. Preferred substrate for Amy29 was pullulan, which was degraded to panose, and the enzyme had no detectable activity on CDs. In addition to its different activity profile and domain composition, Amy29 also displayed a different conservation (LPKF) in the fifth conserved region (MPKL) proposed to identify the subfamily. All enzymes had apparent temperature optima in the range 50–65°C, while thermostability varied, and was highest for Amy29 with a half-life of 480 min at 80°C. Calcium dependent activity or stability was monitored in four enzymes, but could not be detected for Amy29 or 98. Tightly bound calcium can, however, not be ruled out, and putative calcium ligands were conserved in Amy98.  相似文献   

8.
Starch and pullulan-modifying enzymes of the α-amylase family (glycoside hydrolase family 13) have several industrial applications. To date, most of these enzymes have been derived from isolated organisms. To increase the number of members of this enzyme family, in particular of the thermophilic representatives, we have applied a consensus primer-based approach using DNA from enrichments from geothermal habitats. With this approach, we succeeded in isolating three new enzymes: a neopullulanase and two cyclodextrinases. Both cyclodextrinases displayed significant maltogenic amylase side activity, while one showed significant neopullulanase side activity. Specific motifs and domains that correlated with enzymatic activities were identified; e.g., the presence of the N domain was correlated with cyclodextrinase activity. The enzymes exhibited stability under thermophilic conditions and showed features appropriate for biotechnological applications.  相似文献   

9.
Staphylothermus marinus maltogenic amylase (SMMA) is a novel extreme thermophile maltogenic amylase with an optimal temperature of 100 °C, which hydrolyzes α-(1-4)-glycosyl linkages in cyclodextrins and in linear malto-oligosaccharides. This enzyme has a long N-terminal extension that is conserved among archaic hyperthermophilic amylases but is not found in other hydrolyzing enzymes from the glycoside hydrolase 13 family. The SMMA crystal structure revealed that the N-terminal extension forms an N' domain that is similar to carbohydrate-binding module 48, with the strand-loop-strand region forming a part of the substrate binding pocket with several aromatic residues, including Phe-95, Phe-96, and Tyr-99. A structural comparison with conventional cyclodextrin-hydrolyzing enzymes revealed a striking resemblance between the SMMA N' domain position and the dimeric N domain position in bacterial enzymes. This result suggests that extremophilic archaea that live at high temperatures may have adopted a novel domain arrangement that combines all of the substrate binding components within a monomeric subunit. The SMMA structure provides a molecular basis for the functional properties that are unique to hyperthermophile maltogenic amylases from archaea and that distinguish SMMA from moderate thermophilic or mesophilic bacterial enzymes.  相似文献   

10.
Kim MJ  Lee HS  Cho JS  Kim TJ  Moon TW  Oh ST  Kim JW  Oh BH  Park KH 《Biochemistry》2002,41(29):9099-9108
A novel inhibitor against maltose-producing alpha-amylase was prepared via stepwise degradation of a high-molecular-weight acarbose (HMWA) using Thermus maltogenic amylase (ThMA). The structure of the purified inhibitor was determined to be alpha-D-glucopyranosyl-alpha-acarviosinyl-D-glucopyranose (GlcAcvGlc) by (13)C NMR and MALDI-TOF/MS. Progress curves of PNPG2 hydrolysis by various amylolytic enzymes, including MGase, ThMA, and CDase I-5, in the presence of acarbose or GlcAcvGlc indicated a slow-binding mode of inhibition. Analytical ultracentrifugation and X-ray crystallography analyses revealed that the presence of GlcAcvGlc increased the dimerization of ThMA. The formation of dimer complexed with GlcAcvGlc might induce a conformational change in ThMA, leading to a two-step inhibition process. The inhibition potency of GlcAcvGlc for MGase, ThMA, and CDase I-5 was 3 orders of magnitude higher than that of acarbose.  相似文献   

11.
The goal of this study was to develop a maltose-producing enzyme using protein engineering and to clarify the relation between the substrate specificity and the structure of the substrate-binding site of dimeric maltogenic amylase isolated from Thermus (ThMA). Ala290 at the interface of ThMA dimer in the vicinity of the substrate-binding site was substituted with isoleucine, which may cause a structural change due to its bulky side chain. TLC analysis of the action pattern of the mutant ThMA-A290I, using maltooligosaccharides as substrates, revealed that ThMA-A290I used maltotetraose to produce mostly maltose, while wild-type ThMA produced glucose as well as maltose. The wild-type enzyme eventually hydrolyzed the maltose produced from maltotetraose into glucose, but the mutant enzyme did not. For both enzymes, the cleavage frequency of the glycosidic bond of maltooligosaccharides was the highest at the second bond from the reducing end. The mutant ThMA had a much higher Km value for maltose than the wild-type ThMA. The kinetic parameter, kcat/Km) of ThMA-A290I for maltose was 48 times less than that of wild-type ThMA, suggesting that the subsite affinity and hydrolysis mode of ThMA were modulated by the residue located at the interface of ThMA dimer near the active site. The conformational rearrangement in the catalytic interface probably led to the change in the substrate binding affinity of the mutant ThMA. Our results provide basic information for the enzymatic preparation of high-maltose syrup.  相似文献   

12.
To elucidate the relationship between the substrate size and geometric shape of the catalytic site of Thermus maltogenic amylase, Gly50, Asp109, and Val431, located at the interface of the dimer, were replaced with bulky amino acids. The k(cat)/K(m) value of the mutant for amylose increased significantly, whereas that for amylopectin decreased as compared to that of the wild-type enzyme. Thus, the substituted bulky amino acid residues modified the shape of the catalytic site, such that the ability of the enzyme to distinguish between small and large molecules like amylose and amylopectin was enhanced.  相似文献   

13.
A novel enzyme, RA.04, belonging to the alpha-amylase family was obtained after expression of metagenomic DNA from rumen fluid (Ferrer et al.: Environ. Microbiol. 2005, 7, 1996-2010). The purified RA.04 has a tetrameric structure (280 kDa) and exhibited maximum activity (5000 U/mg protein) at 70 degrees C and was active within an unusually broad pH range from 5.5 to 9.0. It maintained 80% activity at pH 5.0 and 9.5 and 75 degrees C. The enzyme hydrolyzed alpha-D-(1,4) bonds 13-fold faster than alpha-D-(1,6) bonds to yield maltose and glucose as the main products, and it exhibited transglycosylation activity. Its preferred substrates, in the descending order, were maltooligosaccharides (C3-C7), cyclomaltoheptaose (beta-CD), cyclomaltohexaose (alpha-CD), cyclomaltooctaose (gamma-CD), soluble starch, amylose, pullulan and amylopectin. The biochemical properties and amino acid sequence alignments suggested that this enzyme is a cyclomaltodextrinase. However, despite the similarity in the catalytic module (with Glu359 and Asp331 being the catalytic nucleophile and substrate-binding residues, respectively), the enzyme bears a shorter N-terminal domain that may keep the active site more accessible for both starch and pullulan, compared to the other known CDases. Moreover, RA.04 lacks the well-conserved N-terminal Trp responsible for the substrate preference typical of CDases/MAases/PNases, suggesting a new residue is implicated in the preference for cyclic maltooligosaccharides. This study has demonstrated the usefulness of a metagenomic approach to gain novel debranching enzymes, important for the bread/food industries, from microbial environments with a high rate of plant polymer turnover, exemplified by the cow rumen.  相似文献   

14.
Kim TJ  Park CS  Cho HY  Cha SS  Kim JS  Lee SB  Moon TW  Kim JW  Oh BH  Park KH 《Biochemistry》2000,39(23):6773-6780
A sequence alignment shows that residue 332 is conserved as glutamate in maltogenic amylases (MAases) and in other related enzymes such as cyclodextrinase and neopullulanase, while the corresponding position is conserved as histidine in alpha-amylases. We analyzed the role of Glu332 in the hydrolysis and the transglycosylation activity of Thermus MAase (ThMA) by site-directed mutagenesis. Replacing Glu332 with histidine reduced transglycosylation activity significantly, but enhanced hydrolysis activity on alpha-(1,3)-, alpha-(1,4)-, and alpha-(1,6)-glycosidic bonds relative to the wild-type (WT) enzyme. The mutant Glu332Asp had catalytic properties similar to those of the WT enzyme, but the mutant Glu332Gln resulted in significantly decreased transglycosylation activity. These results suggest that an acidic side chain at position 332 of MAase plays an important role in the formation and accumulation of transfer products by modulating the relative rates of hydrolysis and transglycosylation. From the structure, we propose that an acidic side chain at position 332, which is located in a pocket, is involved in aligning the acceptor molecule to compete with water molecules in the nucleophilic attack of the glycosyl-enzyme intermediate.  相似文献   

15.
The alpha-amylase family (glycoside hydrolase family 13; GH 13) contains enzymes with approximately 30 specificities. Six types of enzyme from the family can possess a C-terminal starch-binding domain (SBD): alpha-amylase, maltotetraohydrolase, maltopentaohydrolase, maltogenic alpha-amylase, acarviose transferase, and cyclodextrin glucanotransferase (CGTase). Such enzymes are multidomain proteins and those that contain an SBD consist of four or five domains, the former enzymes being mainly hydrolases and the latter mainly transglycosidases. The individual domains are labelled A [the catalytic (beta/alpha)8-barrel], B, C, D and E (SBD), but D is lacking from the four-domain enzymes. Evolutionary trees were constructed for domains A, B, C and E and compared with the 'complete-sequence tree'. The trees for domains A and B and the complete-sequence tree were very similar and contain two main groups of enzymes, an amylase group and a CGTase group. The tree for domain C changed substantially, the separation between the amylase and CGTase groups being shortened, and a new border line being suggested to include the Klebsiella and Nostoc CGTases (both four-domain proteins) with the four-domain amylases. In the 'SBD tree' the border between hydrolases (mainly alpha-amylases) and transglycosidases (principally CGTases) was not readily defined, because maltogenic alpha-amylase, acarviose transferase, and the archaeal CGTase clustered together at a distance from the main CGTase cluster. Moreover the four-domain CGTases were rooted in the amylase group, reflecting sequence relationships for the SBD. It appears that with respect to the SBD, evolution in GH 13 shows a transition in the segment of the proteins C-terminal to the catalytic (beta/alpha)8-barrel(domain A).  相似文献   

16.
The gene (nplT) for a new type of pullulan-hydrolysing enzyme, neopullulanase, from Bacillus stearothermophilus TRS40 was sequenced. The DNA sequence revealed only one large open reading frame, composed of 1764 bases and 588 amino acid residues (Mr 69144). Although the thermostable neopullulanase contained eight cysteine residues, they did not provide conformational stability by disulphide bonds. A comparison was made of the amino acid sequences of alpha-amylase, neopullulanase, isoamylase, pullulanase and cyclodextrin glucanotransferase. All the enzymes examined contained four highly conserved regions which probably constitute the active centres of the enzymes. The amino acid residues required for the specificity of neopullulanase are compared with those of alpha-amylase and other amylolytic enzymes.  相似文献   

17.
The available amino acid sequences of the α-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (β/α)8-barrel between the strand β3 and the helix α3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an α-helix succeeded by a three-stranded antiparallel β-sheet. These enzymes are α-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few α-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (β/α)8-barrel elements throughout the entire sequence of enzymes from the oligo-1,6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the α-amylase family. Received: 4 December 1996 / Accepted: 13 March 1997  相似文献   

18.
PFTA (Pyrococcus furiosus thermostable amylase) is a hyperthermophilic amylase isolated from the archaeon Pyrococcus furiosus. This enzyme possesses characteristics of both α-amylase- and cyclodextrin (CD)-hydrolyzing enzymes, allowing it to degrade pullulan, CD and acarbose—activities that are absent in most α-amylases—without the transferring activity that is common in CD-hydrolyzing enzymes. The crystal structure of PFTA revealed a unique monomeric subunit with an extended N-terminal region and an N′-domain folded into its own active site—a significantly altered domain configuration relative to that of the conventional dimeric CD-hydrolyzing amylases in glycoside hydrolase family 13. The active site is formed by the interface of the N′-domain and the catalytic domain and exhibits a broad and wide-open geometry without the concave pocket that is commonly found in the active sites of maltogenic amylases. The mutation of a residue (Gly415 to Glu) located at the domain interface between the N′- and catalytic domains yielded an enzyme that produced a significantly higher purity maltoheptaose (G7) from β-CD, supporting the involvement of this interface in substrate recognition and indicating that this mutant enzyme is a suitable candidate for the production of pure G7. The unique configuration of the active site distinguishes this archaic monomeric enzyme from classical bacterial CD-hydrolyzing amylases and provides a molecular basis for its enzymatic characteristics and for its potential use in industrial applications.  相似文献   

19.
An additional amylase besides the typical alpha-amylase was detected in the cytoplasm of Bacillus subtilis SUH4-2, an isolate from Korean soil. The corresponding gene encoded a maltogenic amylase, which hydrolyzed cyclodextrin or starch to maltose and glucose; pullulan to panose; acarbose to glucose and acarviosine-glucose. Maltogenic amylase of B. subtilis SUH4-2 transferred sugar molecules to form various branched oligosaccharides upon the hydrolysis of substrates. The enzyme existed in a monomer-dimer equilibrium with a molar ratio of 3:2 in 50 mM KH(2)PO(4)-NaOH buffer (pH 7.0). The maltogenic amylase is most likely to be associated with carbohydrate metabolism in the cytoplasm, since the nucleotide sequence of the gene was highly homologous to the yvdF gene of B. subtilis 168, which is located in a gene cluster involved in maltose/maltodextrin utilization.  相似文献   

20.
一种新型淀粉酶的鉴定及其产酶菌株的筛选   总被引:14,自引:1,他引:14  
对筛选到的菌株ZX99产生的一种新型淀粉酶(异麦芽低聚糖酶)进行了分析鉴定,ZX99菌株能产生一种胞外淀粉酶,该酶能催化淀粉的降解产生异麦芽低聚糖,对原产酶菌株ZX99多次进行紫外线照射诱变后,获得了优良,稳定的变异菌株RB3.232,其产酶水平为原株的160%,产物薄层层析证明,该酶能催化淀粉的降解,产生异麦芽糖,潘糖,异麦芽三糖和异麦芽四糖等低聚糖,但对普鲁兰基本不起作用,由此证明它是一种不同于新型普鲁兰酶(nepullulanase)和 传统淀粉酶(amylase)的一种新型淀粉酶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号